Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.737 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v13.i4.40
pages 395-412


Maha Yamak
Department of Chemical Engineering, California State University, Long Beach, California, USA
Shirley C. Tsai
Department of Chemical Engineering, California State University, Long Beach,California, USA, and Institute of Applied Science and Engineering Research, Academia Sinica, Taipei, Taiwan
Ken Law
Department of Chemical Engineering, California State University, Long Beach, California, USA


In this article, ultrasound-modulated two-fluid (UMTF) atomization of viscous Newtonian liquids at a lower ultrasonic frequency (25 kHz) is compared to that at fundamental frequencies of 54 and 110 kHz. The experimental data obtained show a shift to smaller drop sizes at a higher air velocity and a larger ratio of air-to-liquid mass flow rate, consistent with those obtained previously at the higher fundamental frequencies. Also consistent with earlier findings, the drop-size distribution becomes narrower as liquid viscosity increases. The experimental results of drop-size distribution are consistent with the theoretical predictions of greater-amplitude growth rates for the capillary waves generated by higher (third and above) harmonics than by the first and second harmonics based on the modified Taylor’s dispersion relation. However, since the harmonics differ in frequency by 25 kHz only, more than one higher harmonic (up to fifth) make significant contributions in UMTF atomization. Compared to the acoustic-modulated pressure atomization that also operates at 25 kHz, the UMTF atomization requires an ultrasonic drive two orders of magnitude smaller.

Articles with similar content:

Characterization of Sprays Produced by Low Frequency Ultrasonic Atomizers
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Daniel Sindayihebura, Jean Cousin, Christophe Dumouchel
Estrogenic Substances from the Mycelia of Medicinal Fungus Cordyceps ophioglossoides (Ehrh.) Fr. (Ascomycetes)
International Journal of Medicinal Mushrooms, Vol.6, 2004, issue 3
Noriko Kinjo, Hirokazu Kawagishi, Fumio Kobayashi, Kentaro Okamura
Journal of Porous Media, Vol.17, 2014, issue 5
Mukesh Awasthi
A Comparative Assessment of the Potential of Polysaccharide Production and Intracellular Sugar Composition within Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (W.Curt.:Fr.)P. Karst. (Aphyllophoromycetideae)
International Journal of Medicinal Mushrooms, Vol.13, 2011, issue 2
Georgios I. Zervakis, Jasmina Simonic, Jelena Vukojević, Vuk Maksimovic, Mirjana Stajic, Jasmina Glamoclija
Seasonal Variation in Biomass, Abundance and Plant Length of Different Life Stages from Gracilaria cliftonii (Gracilariales, Rhodophyta)
International Journal on Algae, Vol.14, 2012, issue 3
J. Munoz, Ravi Fotedar, J. Fewtrell