Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007494
pages 525-540

EFFECTS OF DROP AND FILM VISCOSITY ON DROP IMPACTS ONTO THIN FILMS

Darren Banks
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92521, USA
Cynthia Ajawara
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92507, USA
Rafael Sanchez
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92507, USA
Hamza Surti
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92507, USA
Guillermo Aguilar
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92507, USA

RESUMO

While drop–film impacts have been studied extensively in the past, little thought has been given towards separating the effects of the drop fluid properties from those of the film. Distinguishing between the behaviors resulting from characteristics of each independently could provide insight into the underlying physical phenomena with a clarity that is unavailable when the drop and the film consist of identical liquids. In this study, the viscosity is the central parameter varied in both drop and film liquid. Using water, aqueous glycerol mixtures, and Fluoroinert FC-72, a range of kinematic viscosity covering 3 orders of magnitude (4 × 10−7 − 6.5 × 10−4 m2/s) is examined; a smaller range of surface tension (0.024−0.072 N/m) is covered, as well. Drop impacts occur over a range of Weber numbers from 20 to 3000 and Reynolds numbers from 20 to 14000. Impact outcomes categorized are both formation of a crown and splashing from the crown. Criteria for each impact outcome are presented in light of both film and drop properties; certain outcomes are found to depend more strongly on either the properties of the drop or the film individually. Crown formation appears to relate more strongly to the film's properties, whereas crown splashing has some dependence on the drop properties. Existing splashing correlations are examined in light of the separation of properties.