Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.737 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i4.30
pages 297-310

SPLASHING PHENOMENA DURING LIQUID DROPLET IMPACT

Jie Liu
Department of Mechanical Engineering, University of California-Riverside, USA
Henry Vu
Department of Mechanical Engineering, University of California-Riverside, Riverside, USA , Advatech Pacific, Incorporated, Advanced Technology Division, Palmdale, California 93550, USA
Sam S. Yoon
Mechanical Engineering Department, Korea University, Anamdong, 5-Ga, Sungbukgu, Seoul, 136-713, Korea
Richard A. Jepsen
Mechanical Environments, Sandia National Laboratory, P.O. Box 5800, Albuquerque, New Mexico 87185-1135, USA
Guillermo Aguilar
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92507, USA

RESUMO

Splashing is a phenomenon often observed during liquid droplet impact onto a solid surface. The threshold of splashing is known to be related to droplet size, impact velocity, and physical properties of the liquid, but the mechanisms that initiate splashing are not understood completely. In accordance with the Kelvin-Helmholtz (K-H) instability analysis, recent studies have shown that ambient gas density has a significant effect on the threshold and trajectory of splashing. In this study, the effects of droplet velocity, impact angle, and ambient gas pressure (or density) on the threshold of splashing and the motion of the ambient gas surrounding the droplet were examined. Experimental observations of splashing were carried out with a droplet of 1.7 mm in diameter, while varying droplet velocity, impact angle, and ambient pressure. An empirical correlation was derived using our and other published data to determine the threshold of splashing based on the aforementioned parameters. Also, a numerical simulation using the volume of fluid method was carried out to calculate the gas velocities surrounding the droplet during impact. The results of this model gave supportive evidence that K-H instability is a suitable instability theory that helps explain the splash phenomenon with consideration of the gas motion surrounding the droplet.


Articles with similar content:

DROPLET IMPACT ON SHEAR-DRIVEN LIQUID FILMS
Atomization and Sprays, Vol.21, 2011, issue 10
S. Alghoul, D. Hann, Carol Eastwick
BREAKUP MECHANISMS AND DRAG COEFFICIENTS OF HIGH-SPEED VAPORIZING LIQUID DROPS
Atomization and Sprays, Vol.6, 1996, issue 3
Rolf D. Reitz, Z. Liu, S. S. Hwang
DISINTEGRATION OF LIQUID JETS FROM A COAXIAL DUAL NOZZLE, PART I: OBSERVATION OF BREAKUP PHENOMENA
Atomization and Sprays, Vol.7, 1997, issue 5
Soo-Young No, Masataka Arai, Kenji Amagai
REVIEW OF FUEL SPRAY DISTRIBUTIONS TO PREDICT PERFORMANCE OF ROTARY ATOMIZERS IN A SLINGER GAS TURBINE COMBUSTOR
Atomization and Sprays, Vol.26, 2016, issue 5
Bernard Paquet, Alain de Champlain, Small Kalla
NUMERICAL STUDY OF THE EFFECTS OF GAS TEMPERATURE FLUCTUATION ON A TURBULENT EVAPORATING SPRAY
Atomization and Sprays, Vol.8, 1998, issue 1
Jose C. F. Pereira, X.-Q. Chen