Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015011361
pages 657-673

EFFECT OF ATOMIZING AIR FLOW ON SPRAY ATOMIZATION OF AN INTERNAL-MIX TWIN-FLUID ATOMIZER

Cheng Tung Chong
Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
Simone Hochgreb
University of Cambridge

RESUMO

The effect of the atomization air flow rate on the spray characteristics of a swirling twin-fluid atomizer operating on Diesel fuel is investigated. The mean droplet axial velocity and size distributions were simultaneously measured using a phase Doppler anemometer (PDA). The mean droplet diameter is found to increase with radial distance from the spray centreline, while its axial velocity decreases from a peak at the centreline. Increasing the atomizing air-liquid fuel mass ratio (ALR) reduces the fuel droplet size due to the increased shear and increases the spray penetration length as a result of increased momentum. Comparison of the drop size-ALR relations to previous independently developed correlations shows good agreement. A comparison was made between the observable boundaries obtained with Mie scattering and the droplet number density. It is found that the Mie images correspond to 95%−99% edge of the cumulative droplet mass distribution through the spray.


Articles with similar content:

EXPERIMENTAL STUDIES ON HIGH-PRESSURE SPRAY STRUCTURE OF BIOFUELS
Atomization and Sprays, Vol.21, 2011, issue 6
R. V. Ravikrishna, Devendra Deshmukh
MODELING ATOMIZATION PROCESSES OF PRESSURE-SWIRL HOLLOW-CONE FUEL SPRAYS
Atomization and Sprays, Vol.7, 1997, issue 6
Rolf D. Reitz, Scott E. Parrish, Zhiyu Han, Patrick V. Farrell
EXPERIMENTAL INVESTIGATIONS ON A PIEZO-ACTIVATED HOLLOW CONE INJECTOR − PART II: THE INFLUENCE OF NEEDLE LIFT ON DROPLET SIZE DISTRIBUTIONS AND VORTEX FORMATION
Atomization and Sprays, Vol.24, 2014, issue 10
Graham Wigley, Konstantinos Boulouchos, B. Schneider, Andreas Schmid
MEASUREMENTS OF DIESEL SPRAY DYNAMICS AND THE INFLUENCE OF FUEL VISCOSITY USING PIV AND SHADOWGRAPHY
Atomization and Sprays, Vol.21, 2011, issue 2
C. Bong, P. A. Brandner, Laurie Goldsworthy
LIQUID AND VAPOR SPRAY STRUCTURE IN HIGH-PRESSURE COMMON RAIL DIESEL INJECTION
Atomization and Sprays, Vol.11, 2001, issue 5
Gilles Bruneaux