Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2012005718
pages 561-579

LIQUID JET BREAKUP STRUCTURE AND TRANSFER EFFICIENCY OF A TWO-STAGE AIR-BLAST INJECTOR

Inchul Lee
Department of Aerospace and Mechanical Engineering, Graduate School of Korea Aerospace University, Korea
Dohun Kim
Department of Aerospace and Mechanical Engineering, Graduate School of Korea Aerospace University, Korea
Jaye Koo
School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang, Gyeonggi, 412-791, Republic of Korea

RESUMO

In spray painting and coating industries, air-blast injectors configured with a liquid-centered and two-stage gas nozzle have many advantages, including low paint bounce-back and high transfer efficiency. Experimental investigations are used to study overspray characteristics and transfer efficiency. To verify the effect of the gas jets, air-blast injectors with a gas post of two stages are designed to analyze the overall spray characteristics as well as to increase the transfer efficiency. The experimental results show that the liquid jet breakup is governed by the gas jets of the inner stage In the case of the inner stage gas injection mode, better atomization qualities can be achieved. However, in the case of the outer stage gas injection mode, larger droplet distributions appeared at the same measurement point. As the momentum ratio of the gas jets increased, the droplet sizes decreased. Additionally, the gas jets of the outer stage also contributed to the atomization at the far-field spray region, and it also contributed to the droplet transportation to the object. It was observed that, as the velocity of the gas jets increased, the mean drop diameters decreased and the transfer efficiency increased due to the outer gas post which caused an air curtain to surround the spray jets so that an impinged droplet could not overspray to the outer region of the spray jets.


Articles with similar content:

DRILLING CUTTINGS TRANSPORT IN HORIZONTAL WELLS WHILE AERATED DRILLING
4th Thermal and Fluids Engineering Conference, Vol.11, 2019, issue
Ibrahim Hassan, Mohammad Azizur Rahman, Golam Rasul, Stephen Butt, Rashid Hasan
INFLUENCE OF REACTOR PRESSURE ON TWIN-FLUID ATOMIZATION: BASIC INVESTIGATIONS ON BURNER DESIGN FOR HIGH-PRESSURE ENTRAINED FLOW GASIFIER
Atomization and Sprays, Vol.25, 2015, issue 12
T. Kolb, N. Djordjevic, A. Sanger, Tobias Jakobs, N. Zarzalis
THE EFFECTS OF PREFILMING LENGTH AND FEED RATE ON COMPRESSIBLE FLOW IN A SELF-PULSATING INJECTOR
Atomization and Sprays, Vol.27, 2017, issue 11
Wayne Strasser, Francine Battaglia
EXPERIMENTAL STUDY ON VELOCITY DISTRIBUTION OF POST-IMPINGEMENT DIESEL SPRAY ON A WALL. PART 2: EFFECT OF AMBIENT GAS DENSITY AND INJECTION PRESSURE ON FLOW PATTERN
Atomization and Sprays, Vol.26, 2016, issue 9
Yotsugu Odawara, Yoshio Zama, Tomohiko Furuhata
INFLUENCES OF INJECTION PARAMETERS ON TWIN-FLUID DISINTEGRATION OF LIQUID JET
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
T. Inamura, Y.S. Kim, Nobuki Nagai