Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v18.i6.10
pages 471-494

CANONICAL REACTING FLUID DYNAMICS ANALYSIS OF DROPLET VAPORIZATION AND COMBUSTION

Jiunn-Shyan Huang
Department of Mechanical Engineering, Technology and Science Institute of Northern Taiwan, Taipei, Taiwan, 112, R.O.C.
Huei-Huang Chiu
Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,70101, ROC

RESUMO

Canonical reacting fluid dynamics analysis is applied to examine six different mechanisms of quasi-steady gasification of a droplet under axial symmetric flows. The Spalding conduction law and convective enhancement are assessed as two major submechanisms of droplet vaporization, which follows the rule of basic gasification partition, 0 ≤ mim ≤ 1. It is remarkably interesting to note that the Spalding mechanism and convective effects in a burning droplet may give negative gasification in some range of Reynolds numbers, whereas the chemical reaction makes a positive contribution. The maps of gasification source distribution, uniquely constructed from the canonical procedure enabled us, for the first time, to predict and understand the basic aerothermochemical mechanisms of these gasification processes, their dependence on overall flow structure, and the flame topology in a broad range of Reynolds numbers. The heat deliverability index, ξ, which measures net heat transported to the gaseous environment to the heat supplied for droplet gasification, is introduced to assess the energy provided to heating the gas phase.


Articles with similar content:

Energy Separation of Gases with Prandtl Numbers Unequal to Unity
International Heat Transfer Conference 15, Vol.47, 2014, issue
Igor Vigdorovich, Alexander Leontiev
COMBUSTION PHENOMENA OF THE GUN PROPELLANT JA2
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Volker Weiser, Stefan Kelzenberg, Thomas Fischer, Wilhelm Eckl, Norbert Eisenreich, Gesa Langer
THEORY OF DROPLETS (II): STATES, STRUCTURES, AND LAWS OF INTERACTING DROPLETS
Atomization and Sprays, Vol.7, 1997, issue 1
S. P. Su, Huei-Huang Chiu
NUMERICAL MODELLING OF WOOD PARTICLE PYROLYSIS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Rebei Bel Fdhila, Ulf Sand
THE EFFECT OF AN ENERGETIC CHEMICAL REACTION ON CONVECTIVE HEAT TRANSFER
International Heat Transfer Conference 13, Vol.0, 2006, issue
Bo Yu, Stuart W. Churchill