Inscrição na biblioteca: Guest
Atomization and Sprays

Publicou 12 edições por ano

ISSN Imprimir: 1044-5110

ISSN On-line: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

ANALYSIS OF A SEA SPRAY: EFFECT OF SIMULTANEOUS GROWTH AND FRAGMENTATION ON DROPLET/PARTICLE SIZE DISTRIBUTION OF A MULTICOMPONENT AEROSOL

Volume 11, Edição 6, 2001, 20 pages
DOI: 10.1615/AtomizSpr.v11.i6.30
Get accessGet access

RESUMO

Sea spray droplets are produced at the sea surface by bursting bubbles or wind-induced wave breaking. They are comprised of several chemical components and their interaction with the marine humid environment leads to their growth by condensation and absorption of other gases such as SO2. Their atomization process is initiated by wind and there is a possibility that they undergo a secondary breakup at high winds when they are in the boundary-layer flow field near the sea surface. As sea spray droplets are comprised of several chemical components (in a solid as well as in a liquid phase), they are regarded as a class of aerosol droplets/particles in the marine boundary layer (MBL). The larger ones can reach the order of tens of micrometers in diameter and even up to the order of hundreds of micrometers. In the case of relatively large aerosol particles in a low number concentration (from several droplets to a few dozens per cubic centimeter) breakup/fragmentation rather than coalescence/coagulation is dominant. If that is combined with a high-relative-humidity environment, such as exists near the sea surface, then the combination of fragmentation and growth by condensation should be accounted for in environmental studies. Thus, in the present article, the effect of simultaneous growth and particle fragmentation on aerosol number and mass distributions is analyzed. Multicomponent particles are considered in the mathematical model, where each component differs in its growth rate. For a qualitative demonstration of the present growthfragmentation mathematical model, the commonly used growth power law is employed, whereas for the mathematical representation of fragmentation, functional forms are chosen here in such a way that they obey the constant total mass constraint when only fragmentation is taking place. The mathematical results of the present study show that, due to fragmentation, an additional mode occurs in the size distribution. The gap between the modes is affected by growth, as smaller particles grow faster relative to larger ones. These modes and gaps resemble corresponding features observed in reported measurements of sea salt aerosol size distributions, and hence it is suggested here that fragmentation could be partially responsible for these features.

CITADO POR
  1. Johansen Anne M., Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Anions and cations, Journal of Geophysical Research, 109, D5, 2004. Crossref

  2. Goodisman J., Chaiken J., Scaling and the Smoluchowski equations, The Journal of Chemical Physics, 125, 7, 2006. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain