Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v11.i6.20
24 pages

DEVELOPMENT OF A EULERIAN MODEL FOR THE “ATOMIZATION” OF A LIQUID JET

ariane vallet
Irstea
A. A. Burluka
School of Mechanical Engineering, The University of Leeds, Woodhouse Lane, Leeds LS2 9JT UK; and CORIA UMR 6614 CNRS, University of Rouen, Rouen, France
R. Borghi
EGIM, IMT - Technopôle de Château-Gombert, 38, rue Joliot Curie 13451 Marseille Cedex 20, France

RESUMO

In this article, a Eulerian model for the atomization of a liquid jet is proposed. Atomization is considered as turbulent mixing in a flow with variable density in the limit of large Reynolds and Weber numbers. An assumption similar to the Kolmogorov hypothesis has been invoked: large-scale features of the flow are supposed to be independent of viscosity and surface tension at high Reynolds and Weber numbers; small-scale features do depend on viscosity and surface tension. Dispersion of the liquid in the gas phase is computed by a classical equation for the turbulent diffusion flux of the liquid. The mean size of the liquid fragments is obtained with a new equation for the mean surface area of the liquid–gas interface per unit of volume. Discussions concerning this new equation are presented. Several comparisons with experiments are presented, сoncerning the liquid dispersion as well as the mean size of fragments produced.


Articles with similar content:

Development of a Diesel Spray Atomization Model Considering Nozzle Flow Characteristics
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Kang Y. Huh, Eunju Lee, Jaye Koo
A NEW MODEL FOR TURBULENT FLOWS WITH LARGE DENSITY FLUCTUATIONS: APPLICATION TO LIQUID ATOMIZATION
Atomization and Sprays, Vol.17, 2007, issue 4
Pierre-Arnaud Beau, R. Borghi, Francois-Xavier Demoulin, Arnaud Mura, Gregory Blokkeel
THE ENERGY SPECTRUM ANALOGY BREAKUP (SAB) MODEL FOR THE NUMERICAL SIMULATION OF SPRAYS
Atomization and Sprays, Vol.21, 2011, issue 12
Chawki Habchi
MODELING COLLISION OUTCOME IN MODERATELY DENSE SPRAYS
Atomization and Sprays, Vol.20, 2010, issue 3
Gautier Luret, Francois-Xavier Demoulin, Alain Berlemont, Thibaut Menard, Julien Reveillon, Gregory Blokkeel
PREDICTION OF SIZE AND VELOCITY DISTRIBUTIONS IN SPRAYS FORMED BY THE BREAKUP OF PLANAR LIQUID SHEETS USING MAXIMUM ENTROPY FORMALISM
Atomization and Sprays, Vol.21, 2011, issue 6
T. John Tharakan, Achintya Mukhopadhyay, Amitava Datta, Sujit Nath, Swarnendu Sen