Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.262 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007198
pages 71-95

DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL

Jose M. Garcia-Oliver
CMT Motores Termicos−Universitat Politecnica de Valencia, Camino Vera s/n−46022 Valencia, Spain
Jose M. Pastor
CMT-Motores Termicos - Universitat Politecnica de Valencia
Adrian Pandal
Universidad de Oviedo
N. Trask
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
E. Baldwin
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
David P. Schmidt
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA

RESUMO

This work presents an implementation and evaluation of the Σ-Υ atomization model for Diesel spray CFD simulations. The Σ-Υ model is based on an Eulerian representation of the spray atomization and dispersion by means of a single-fluid variable density turbulent flow within a RANS framework. The locally homogeneous flow approach has been applied in order to develop a spray vaporization model based on state relationships. A finite-volume solver for model equations has been created using the OpenFOAM CFD open-source C++ library. Model predictions have been compared to experimental data from free Diesel sprays under nonvaporizing and vaporizing conditions. High-speed imaging, PDPA, and Rayleigh-scattering measurements have been used in order to assess the CFD model. Accurate predictions of liquid and vapor spray penetration, as well as axial velocity and mixture fraction profiles, can be simultaneously achieved for a wide range of injection pressure and ambient conditions, despite only having qualitatively correct predictions of droplet size. The success of these predictions supports the mixing-limited vaporization hypothesis. Model accuracy is better for high ambient density and injection pressure conditions. It is proposed that under low ambient density and injection pressure conditions, interfacial dynamics become more important and the single velocity field assumption is less appropriate.

Palavras-chave: Eulerian, Diesel, evaporation, CFD

Articles with similar content:

A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS Σ-Y EULERIAN ATOMIZATION MODEL
Atomization and Sprays, Vol.26, 2016, issue 7
Jose M. Desantes, Jose M. Pastor, Adrian Pandal, Jose M. Garcia-Oliver
AN EULERIAN-LAGRANGIAN SPRAY AND ATOMIZATION MODEL WITH IMPROVED TURBULENCE MODELING
Atomization and Sprays, Vol.19, 2009, issue 8
Rolf D. Reitz, Wei Ning, Andreas M. Lippert, Ramachandra Diwakar
DNS ANALYSIS OF HEAT AND MASS TRANSFERS IN A DROPLET-LADEN TURBULENT JET
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Karine Truffin, Hicham Meftah, Zakaria Bouali, Julien Reveillon, Bruno Delhom
EXPERIMENTAL STUDY OF PURE AND MULTICOMPONENT FUEL DROPLET EVAPORATION IN A HEATED AIR FLOW
Atomization and Sprays, Vol.7, 1997, issue 3
G. Chen, Thomas A. Jackson, Suresh Aggarwal, G. L. Switzer
LESSONS FROM ANUPRAVAHA: TOWARDS A GENERAL PURPOSE COMPUTATIONAL FRAMEWORK ON HYBRID UNSTRUCTURED MESHES FOR MULTI-PHYSICS APPLICATIONS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Jai Manik, Ganesh Natarajan , Preetirekha Borgohain, Mukul Parmanand, Subrat Kotoky, Amaresh Dalal