Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Atomization and Sprays
Fator do impacto: 1.737 FI de cinco anos: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimir: 1044-5110
ISSN On-line: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007244
pages 193-209

EFFECTS OF NOZZLE EXIT GEOMETRY ON SPRAY CHARACTERISTICS OF A BLURRY INJECTOR

Claudia Goncalves Azevedo
Associate Combustion and Propulsion Laboratory, Brazilian Space Research Institute, Cachoeira Paulista, Sao Paulo, CEP 12630-000, Brazil
Jose Carlos de Andrade
Associate Combustion and Propulsion Laboratory, Brazilian Space Research Institute, Cachoeira Paulista, Sao Paulo, CEP 12630-000, Brazil
Fernando de Souza Costa
Associate Combustion and Propulsion Laboratory, Brazilian Space Research Institute, Cachoeira Paulista, Sao Paulo, CEP 12630-000, Brazil

RESUMO

This paper analyses the effects of nozzle geometry on sprays produced by a blurry injector using water as test fluid. Significant differences on the sprays formed by the injector were observed for cylindrical, conical−cylindrical, and conical nozzle exit configurations. Several operational characteristics were determined, including average droplet diameters, discharge coefficients, air-to-liquid mass ratios, and spray cone angles. Conical and cylindrical−conical nozzles have shown similar behavior and higher atomization efficiency, yielding smaller Sauter mean diameters and mass median diameters than the cylindrical nozzle. Nevertheless, they presented lower discharge coefficients and required higher air-to-liquid mass ratios, airflow rates, and air exit velocities than the cylindrical nozzle.


Articles with similar content:

Comparison between Laser Diffraction Method and Phase Doppler Method for Spray Characteristics of Air-Assisted Swirl Atomized
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
K. Kawamura, Yo. Idota, Yo. Ohkubo
SPRAY BEHAVIOR OF THE ROTARY ATOMIZER WITH IN-LINE INJECTION ORIFICES
Atomization and Sprays, Vol.20, 2010, issue 10
Seong Ho Jang, Seong Man Choi
COMPARISON OF WATER-IN-OIL EMULSION ATOMIZATION CHARACTERISTICS FOR LOW- AND HIGH-CAPACITY PRESSURE-SWIRL NOZZLES
Atomization and Sprays, Vol.21, 2011, issue 5
Christopher D. Bolszo, William A. Sirignano, Adrian A. Narvaez, Vincent G. McDonell, Derek Dunn-Rankin
SPRAY CHARACTERISTICS OF AN AIR-DRIVEN ROTARY ATOMIZER WITH A DOUBLE-LAYER CUP FOR USE IN AN INDUSTRIAL OIL BURNER
Atomization and Sprays, Vol.20, 2010, issue 7
Daejin Cho, Suckju Yoon, Youngha Choi, Jaiho Lee
DIESEL FUEL SPRAY DROPLET SIZES AND VOLUME FRACTIONS FROM THE REGION 25 MM BELOW THE ORIFICE
Atomization and Sprays, Vol.13, 2003, issue 1
Terry Parker, Jennifer Labs