Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Eukaryotic Gene Expression
Fator do impacto: 2.156 FI de cinco anos: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Imprimir: 1045-4403
ISSN On-line: 2162-6502

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v16.i2.60
pages 183-192

Combinatorial Action of RUNX1 and PU.1 in the Regulation of Hematopoiesis

Yogen Saunthararajah
Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL
Piernicola Boccuni
Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL
Giuseppina Nucifora
Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL

RESUMO

The hematopoietic stem cell (HSC) has the potential to differentiate into mature cells with distinct phenotypes and functions. As suggested in recent reports, this plasticity can expand to include nonhematopoietic lineages, and, indeed, the HSC may repopulate liver and muscle tissues, as well. Considering the flexibility in HSC differentiation, these processes are regulated by a relatively small number of factors, some of which are expressed in all lineages, whereas others are activated only in a specific cell type. Combined evidence from many studies suggests that alternative subsets of these factors work in a combinatorial manner to regulate specific promoters for the induction of a specific lineage. RUNX1 and PU.1 have a fundamental role in HSC differentiation in that multifactor complexes are assembled around these proteins leading to tissue-specific and synergistic gene activation. Here we describe the relationship of RUNX1 with PU.1 as a facet of the combinatorial relationships that determine hematopoietic lineage commitment.


Articles with similar content:

Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary Stein, Christopher Lengner
T Cell Proliferation and Homeostasis: An Emerging Role for the Cell Cycle Inhibitor Geminin
Critical Reviews™ in Immunology, Vol.31, 2011, issue 3
Stavros Taraviras, Dimitris Kioussis, Panorea Kotantaki, Zoi Lygerou, Dimitris Karamitros
Signaling Networks that Control the Lineage Commitment and Differentiation of Bone Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 1
Shuying Yang, Wei Chen, Carrie S. Soltanoff, Yi-Ping Li
Transcriptional Control of Matrix Metalloproteinases and the Tissue Inhibitors of Matrix Metalloproteinases
Critical Reviews™ in Eukaryotic Gene Expression, Vol.7, 1997, issue 1-2
Paula Borden , Renu A. Heller
Gadd45 Stress Sensors in Malignancy and Leukemia
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 1-2
Xiogen Sha, Alisha Mohamed-Hadley, Dan Liebermann, Ksushiki Mukherjee, Jennifer S. Tront, Barbara Hoffman