Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Eukaryotic Gene Expression
Fator do impacto: 1.841 FI de cinco anos: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimir: 1045-4403
ISSN On-line: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2019026460
pages 113-121

Dysregulated Expression of Long Noncoding RNAs in Endometriosis

Xue-ying Zhang
Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
Lian-wen Zheng
Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
Chun-jin Li
College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
Ying Xu
Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
Xu Zhou
College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
Lu-lu Fu
Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
Dan-dan Li
Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
Li-ting Sun
College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, China
Di Zhang
Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
Man-hua Cui
Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin 130041, China


Endometriosis is a common debilitating gynecologic disease. Almost 10% of reproductive-age women are affected by this disease; they commonly suffer pelvic pain and/or infertility. Early diagnosis of this multifactorial disease remains difficult because its etiology is not clear and the early symptoms are nonspecific. In addition, many reproductive-age women are unwilling to undergo invasive laparoscopic surgery because of the possibility of decreasing fertility. Thus, identifying biomarkers for the early diagnosis of endometriosis a key focus of current research. Long noncoding RNAs (lncRNAs) are a class of noncoding transcripts that have length of > 200 nucleotides and lack protein-coding ability but still influence gene expression in various ways. With advances in genome-wide analysis, researchers have determined that lncRNAs play an important role in many human diseases, particularly tumors. Moreover, the role of lncRNAs in the pathogenesis of endometriosis has been continually recognized. In this review, we discuss the status of current research on dysregulated lncRNAs and their roles in the pathogenesis of endometriosis. We aim to stimulate new investigations toward the identification of lncRNAs as biomarkers for the early diagnosis and therapy of this long-term gynecological disease.


  1. Rokitansky C. , Über uterusdrüsen-neubildung in uterus- und ovarial-sarcomen. [On the neoplasm of uterus glands on uterine and ovarian sarcomas]. Zeitschr Gesellschaft der Aerzte in Wien. 1860;16:577–81. (in German).

  2. Giudice LC, Kao LC. , Endometriosis. Lancet (London, England). 2004;364:1789–99.

  3. Herington JL, Bruner-Tran KL, Lucas JA, Osteen KG. , Immune interactions in endometriosis. Expert Rev Clin Immunol. 2011;7:611–26.

  4. Sasson IE, Taylor HS. , Stem cells and the pathogenesis of endometriosis. Ann NY Acad Sci. 2008;1127:106–15.

  5. Borrelli GM, Carvalho KI, Kallas EG, Mechsner S, Baracat EC, Abrao MS. , Chemokines in the pathogenesis of endometriosis and infertility. J Reprod Immunol. 2013;98:1–9.

  6. Ahn SH, Singh V, Tayade C. , Biomarkers in endometriosis: challenges and opportunities. Fertil Steril. 2017;107:523–32.

  7. Sampson JA. , Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3:93–110.43.

  8. D’Hooghe T, Hummelshoj L. , Multi-disciplinary centres/networks of excellence for endometriosis management and research: a proposal. Hum Reprod. 2006;21:2743–48.

  9. Verkauf BS. , Incidence, symptoms, and signs of endometriosis in fertile and infertile women. J FL Med Assoc. 1987;74:671–75.

  10. Ballard K, Lowton K, Wright J. , What’s the delay? A qualitative study of women’s experiences of reaching a diagnosis of endometriosis. Fertil Steril. 2006;86:1296–301.

  11. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. , Specific expression of long noncoding RNAs in the mouse brain. Proc Nat Acad Sci U S A. 2008;105:716–21.

  12. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL., Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Nat Acad Sci U S A. 2009;106:11667–72.

  13. An S, Song JJ. , The coded functions of noncoding RNAs for gene regulation. Molec Cells. 2011;31:491–96.

  14. Ernst C, Morton CC. , Identification and function of long non-coding RNA. Front Cell Neurosci. 2013;7:168.

  15. Lee C, Kikyo N. , Strategies to identify long noncoding RNAs involved in gene regulation. Cell Biosci. 2012;2:37.

  16. Sun PR, Jia SZ, Lin H, Leng JH, Lang JH. , Genome-wide profiling of long noncoding ribonucleic acid expression patterns in ovarian endometriosis by microarray. Fertil Steril. 2014;101:1038–46 e7.

  17. Wang Y, Li Y, Yang Z, Liu K, Wang D. , Genome-wide microarray analysis of long non-coding RNAs in eutopic secretory endometrium with endometriosis. Cell Physiol Biochem. 2015;37:2231–45.

  18. Wang WT, Sun YM, Huang W, He B, Zhao YN, Chen YQ. , Genome-wide long non-coding RNA analysis identified circulating lncRNAs as novel non-invasive diagnostic biomarkers for gynecological disease. Sci Rep. 2016;6:23343.

  19. Goshen R, Rachmilewitz J, Schneider T, de-Groot N, Ariel I, Palti Z, Hochberg AA. , The expression of the H-19 and IGF-2 genes during human embryogenesis and placental development. Molec Reprod Devel. 1993;34:374–79.

  20. Rachmilewitz J, Goshen R, Ariel I, Schneider T, de Groot N, Hochberg A. , Parental imprinting of the human H19 gene. FEBS Lett. 1992;309:25–28.

  21. Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP. , Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 2002;62:6442–46.

  22. Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y. , The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52:101–12.

  23. Ariel I, Weinstein D, Voutilainen R, Schneider T, Lustig-Yariv O, de Groot N, Hochberg A. , Genomic imprinting and the endometrial cycle. The expression of the imprinted gene H19 in the human female reproductive organs. Am J Surg Pathol B. 1997;6:17–25.

  24. Ivanga M, Labrie Y, Calvo E, Belleau P, Martel C, Luu-The V, Morissette J, Labrie F, Durocher F. , Temporal analysis of E2 transcriptional induction of PTP and MKP and downregulation of IGF-I pathway key components in the mouse uterus. Physiol Genom. 2007;29:13–23.

  25. Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, Mueller M, Flannery C, Huang Y, Taylor HS. , H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med. 2015;7:996–1003.

  26. Li N, Yang M, Shi K, Li W. , Long non-coding RNA HOXA11-AS in human cancer: a meta-analysis. Clin Chim Acta. 2017;474:165–70.

  27. Villegas VE, Zaphiropoulos PG. , Neighboring gene regulation by antisense long non-coding RNAs. Int J Mol Sci. 2015;16:3251–66.

  28. Richards EJ, Permuth-Wey J, Li Y, Chen YA, Coppola D, Reid BM, Lin HY, Teer JK, Berchuck A, Birrer MJ, Lawrenson K, Monteiro AN, Schildkraut JM, Goode EL, Gayther SA, Sellers TA, Cheng JQ., A functional variant in HOXA11-AS, a novel long non-coding RNA, inhibits the oncogenic phenotype of epithelial ovarian cancer. Oncotarget. 2015;6:34745–57.

  29. Chau YM, Pando S, Taylor HS. , HOXA11 silencing and endogenous HOXA11 antisense ribonucleic acid in the uterine endometrium. J Clin Endocrinol Metab. 2002;87:2674–80.

  30. Wang XN, Zhang LH, Cui XD, Wang MX, Zhang GY, Yu PL. , lncRNA HOXA11-AS is involved in fracture healing through regulating mir-124-3p. European Rev Med Pharma Sci. 2017;21:4771–76.

  31. Cui Y, Yi L, Zhao JZ, Jiang YG. , Long noncoding RNA HOXA11-AS functions as miRNA sponge to promote the glioma tumorigenesis through targeting miR-140-5p. DNA Cell Biol. 2017;36:822–28.

  32. Xu C, He T, Li Z, Liu H, Ding B. , Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth, migration and invasion of glioma cells. Biomed Pharmacother. 2017;95:1504–13.

  33. Li W, Jia G, Qu Y, Du Q, Liu B, Liu B. , Long Non-Coding RNA (LncRNA) HOXA11-AS promotes breast cancer invasion and metastasis by regulating epithelial-mesenchymal transition. Medical Sci Monitor. 2017;23:3393–403.

  34. Wang M, Hao C, Huang X, Bao H, Qu Q, Liu Z, Dai H, He S, Yan W. , Aberrant expression of lncRNA ( HOXA11-AS1) and homeobox A ( HOXA9, HOXA10, HOXA11, and HOXA13) genes in infertile women with endometriosis. Reprod Sci. 2018;25(5):654–61.

  35. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW. , A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999;97:17–27.

  36. Liu C, Wu HT, Zhu N, Shi YN, Liu Z, Ao BX, Liao DF, Zheng XL, Qin L. , Steroid receptor RNA activator: biologic function and role in disease. Clin Chim Acta. 2016;459:137–46.

  37. Leygue E. , Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. Nuclear Receptor Signal. 2007;5:e006.

  38. Hube F, Guo J, Chooniedass-Kothari S, Cooper C, Hamedani MK, Dibrov AA, Blanchard AA, Wang X, Deng G, Myal Y, Leygue E. , Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol. 2006;25:418–28.

  39. McKay DB, Xi L, Barthel KKB, Cech TR. , Structure and function of steroid receptor RNA activator protein, the proposed partner of SRA noncoding RNA. J Mol Biol. 2014;426:1766–85.

  40. Chooniedass-Kothari S, Hamedani MK, Auge C, Wang X, Carascossa S, Yan Y, Cooper C, Vincett D, Myal Y, Jalaguier S, Cavailles V, Leygue E. , The steroid receptor RNA activator protein is recruited to promoter regions and acts as a transcriptional repressor. FEBS Lett. 2010;584:2218–24.

  41. Lin K, Zhan H, Ma J, Xu K, Wu R, Zhou C, Lin J. , Silencing of SRA1 regulates ER expression and attenuates the growth of stromal cells in ovarian endometriosis. Reprod Sci. 2017;24:836–43.

  42. Zhang HF, Li W, Han YD. , LINC00261 suppresses cell proliferation, invasion and Notch signaling pathway in hepatocellular carcinoma. Cancer Biomark. 2018;21:575–82.

  43. Yu Y, Li L, Zheng Z, Chen S, Chen E, Hu Y. , Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med. 2017;21:955–67.

  44. Wang ZK, Yang L, Wu LL, Mao H, Zhou YH, Zhang PF, Dai GH, Long non-coding RNA LINC00261 sensitizes human colon cancer cells to cisplatin therapy. Braz J Med Bio Res. 2017;51:e6793.

  45. Liu Y, Xiao N, Xu SF. , Decreased expression of long non-coding RNA LINC00261 is a prognostic marker for patients with non-small cell lung cancer: a preliminary study. Eur Rev Med Pharmacol Sci. 2017;21:5691–95.

  46. Wang Y, Xue K, Guan Y, Jin Y, Liu S, Wang Y, Liu S, Wang L, Han L. , Long noncoding RNA LINC00261 suppresses cell proliferation and invasion and promotes cell apoptosis in human choriocarcinoma. Oncol Res. 2017;25:733–42.

  47. Sha L, Huang L, Luo X, Bao J, Gao L, Pan Q, Guo M, Zheng F, Wang H. , Long noncoding RNA LINC00261 inhibits cell growth and migration in endometriosis. J Obstet Gynaecol Res. 2017;43:1563–69.

  48. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Muller-Tidow C. , MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

  49. Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S. , MALAT1 long non-coding RNA in cancer. Biochim Biophys Acta. 2016;1859:192–99.

  50. Lu H, He Y, Lin L, Qi Z, Ma L, Li L, Su Y. , Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145. Tumour Biol. 2016;37:1683–91.

  51. Wu Y, Huang C, Meng X, Li J. , Long noncoding RNA MALAT1: insights into its biogenesis and implications in human disease. Curr Pharmaceut Design. 2015;21:5017–28.

  52. Kaller M, Hermeking H. , Interplay between transcription factors and micrornas regulating epithelial-mesenchymal transitions in colorectal cancer. Adv Exper Med Biol. 2016;937:71–92.

  53. Li Q, Zhang C, Chen R, Xiong H, Qiu F, Liu S, Zhang M, Wang F, Wang Y, Zhou X, Xiao G, Wang X, Jiang Q. , Disrupting MALAT1/miR-200c sponge decreases invasion and migration in endometrioid endometrial carcinoma. Cancer Lett. 2016;383:28–40.

  54. Pa M, Naizaer G, Seyiti A, Kuerbang G. , Long noncoding RNA MALAT1 functions as a sponge of MiR-200c in ovarian cancer. Oncol Res. 2017. DOI: doi: 10.3727/096504017X15049198963076

  55. Liang Z, Chen Y, Zhao Y, Xu C, Zhang A, Zhang Q, Wang D, He J, Hua W, Duan P. , miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther. 2017;8:251.

  56. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. , Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662–74.

  57. Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I., Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 2007;67:3963–69.

  58. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. , Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6:e1001233.

  59. Folkersen L, Kyriakou T, Goel A, Peden J, Malarstig A, Paulsson-Berne G, Hamsten A, Hugh W, Franco-Cereceda A, Gabrielsen A, Eriksson P, Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One. 2009;4:e7677.

  60. Uno S, Zembutsu H, Hirasawa A, Takahashi A, Kubo M, Akahane T, Aoki D, Kamatani N, Hirata K, Nakamura Y. , A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis. Nat Genet. 2010;42:707–10 (in Japanese).

  61. Lee GH, Choi YM, Hong MA, Yoon SH, Kim JJ, Hwang K, Chae SJ. , Association of CDKN2B-AS and WNT4 genetic polymorphisms in Korean patients with endometriosis. Fertil Steril. 2014;102:1393–97.

  62. Pagliardini L, Gentilini D, Vigano P, Panina-Bordignon P, Busacca M, Candiani M, Di Blasio AM., An Italian association study and meta-analysis with previous GWAS confirm WNT4, CDKN2BAS and FN1 as the first identified susceptibility loci for endometriosis. J Med Genet. 2013;50:43–46.

  63. Buggio L, Pagliardini L, Gentilini D, De Braud L, Vigano P, Vercellini P. , A rare familial case of endometriosis with very severe gynecological and obstetric complications: novel genetic variants at a glance. Gynecol Obstet Invest. 2014;77:201–4.

  64. Al Saleh S, Al Mulla F, Luqmani YA. , Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One. 2011;6:e20610.

  65. Powell JE, Fung JN, Shakhbazov K, Sapkota Y, Cloonan N, Hemani G, Hillman KM, Kaufmann S, Luong HT, Bowdler L, Painter JN, Holdsworth-Carson SJ, Visscher PM, Dinger ME, Healey M, Nyholt DR, French JD, Edwards SL, Rogers PA, Montgomery GW., Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum Mol Genet. 2016;25:5046–58.

  66. Hu WP, Tay SK, Zhao Y. , Endometriosis-specific genes identified by real-time reverse transcription-polymerase chain reaction expression profiling of endometriosis versus autologous uterine endometrium. J Clin Endocrinol Metab. 2006;91:228–38.

  67. Albertsen HM, Chettier R, Farrington P, Ward K. , Genome-wide association study link novel loci to endometriosis. PLoS One. 2013;8:e58257.

  68. Luong HT, Painter JN, Shakhbazov K, Chapman B, Henders AK, Powell JE, Nyholt DR, Montgomery GW. , Fine mapping of variants associated with endometriosis in the WNT4 region on chromosome 1p36. Int J Mol Epidemiol Genet. 2013;4:193–206.

  69. Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, Wu M, D’Alo F, Melnick A, Leone G, Ebralidze KK, Pradhan S, Rinn JL, Tenen DG. , DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013;503:371–76.

  70. Arab K, Park YJ, Lindroth AM, Schafer A, Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, Dienemann H, Dyckhoff G, Herold-Mende C, Grummt I, Niehrs C, Plass C., Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 2014;55:604–14.