Inscrição na biblioteca: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Publicou 6 edições por ano

ISSN Imprimir: 1045-4403

ISSN On-line: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Nanoformulations of Nutraceuticals for Cancer Treatment

Volume 29, Edição 5, 2019, pp. 449-460
DOI: 10.1615/CritRevEukaryotGeneExpr.2019025957
Get accessGet access

RESUMO

Nutraceuticals are the bioactive chemical compounds, obtained from natural sources, having profound pharmacological activities. The well known phyto-ingredients with fantastic anticancer potential (e.g., curcumin, resveratrol, quercetin, genistein, and epigallocatechin gallate) have been encapsulated in biocompatible and biodegradable polymeric nanoparticles. Currently, anticancer nutraceuticals loaded in biodegradable polymeric nanoparticles demonstrate extraordinary results, revealing maximum solubility, absorption, bioavailability, and anticancer potential in comparison to nutraceuticals alone or in other drug delivery systems. Among these nutraceuticals, curcumin has been extensively studied and established as having optimal anticancer effects after integration in biocompatible and biodegradable polymeric nanoparticles.

Referências
  1. McClements DJ, Xiao H, editors. Designing food structure and composition to enhance nutraceutical bioactivity to support cancer inhibition. In: Seminars in Cancer Biolology. Elsevier; 2017.

  2. Li Y, Go VLW, Sarkar FH. The role of nutraceuticals in pancreatic cancer prevention and therapy: targeting cellular signaling, miRNAs and epigenome. Pancreas. 2015;44(1):1.

  3. Pitchaiah G, Akula A, Chandi V. Anticancer potential of nutraceutical formulations in MNU-induced mammary cancer in Sprague Dawley rats. Pharmacogn Mag. 2017;13(49):46.

  4. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen C-L. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25(1):1-18.

  5. Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJA, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharmaceut Sinica B. 2014;4(3):173-81.

  6. Kim S-K. Marine nutraceuticals: prospects and perspectives. Boca Raton, FL: CRC Press; 2013.

  7. Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52-79.

  8. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, Wolfe C. The global burden of cancer 2013. JAMA Oncol. 2015;1(4):505-27.

  9. Calazans SG, Alves CE, Zanetti NM, Conforti VA, Santilli J, Anjos DS, Magalhaes GM. Metastatic kidney carcinoma causing paralysis of pelvic limbs in a dog. Pakistan Vet J. 2016 Jan 1;36(1):124-26.

  10. Gualtieri M, Devoti CC, Riccardi E, Olivero D. Intestinal metaplasia and overexpression of c-erb2 and p53 in tissue adjacent to dog gastric carcinoma. Pakistan Vet J. 2017;37(3):269-274.

  11. Halasi M, Gartel AL. FOX (M1) news-it is cancer. Molec Cancer Therap. 2013;12(3):245-54.

  12. Shi J, Alagoz O, Erenay FS, Su Q. A survey of optimization models on cancer chemotherapy treatment planning. Ann Op Res. 2014;221(1):331-56.

  13. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013;65(13):1866-79.

  14. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4(10):e838.

  15. Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bio-availability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013;334(1): 133-41.

  16. Chuan L, Zhang J, Yu-Jiao Z, Shu-Fang N, Jun C, Qian W, Shao-Ping N, Ze-Yuan D, Ming-Yong X, Shu W. Biocom-patible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin J Nat Med. 2015;13(9):641-52.

  17. Sanna V, Pala N, Sechi M. Targeted therapy using nano-technology: focus on cancer. Int J Nanomed. 2014;9:467.

  18. Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, De Grossi S, Riccioli A, Amenitsch H, Lagana A. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale. 2014;6(5):2782-92.

  19. Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M, Sadreddini S, Jadidi-Niaragh F, Hojjat-Farsangi M. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumor Biol. 2015;36(8):5727-42.

  20. Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629-54.

  21. Estanqueiro M, Amaral MH, Conceifao J, Lobo JMS. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surfaces B: Biointerf. 2015;126:631-48.

  22. Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polymer Sci. 2013;38(10):1487-503.

  23. Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L. Single-step assembly of DOX/ ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano. 2013;7(3):2056-67.

  24. Tosi G, Bortot B, Ruozi B, Dolcetta D, Vandelli M, Forni F, Severini G. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Curr Med Chem. 2013;20(17):2212-25.

  25. Gao W, Xiang B, Meng T-T, Liu F, Qi X-R. Chemother-apeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials. 2013;34(16):4137-49.

  26. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed: Nanotechnol Biol Med. 2016;12(1):81-103.

  27. Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nature Mater. 2013;12(11):958.

  28. Danafar H, Davaran S, Rostamizadeh K, Valizadeh H, Hamidi M. Biodegradable m-PEG/PCL core-shell micelles: preparation and characterization as a sustained release formulation for curcumin. Adv Pharm Bull. 2014;4(Suppl 2):501.

  29. Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci. 2017;131(15):1781-99.

  30. Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Brit J Pharmacol. 2017;174(11):1325-48.

  31. Andrew R, Izzo AA. Principles of pharmacological research of nutraceuticals. Brit J Pharmacol. 2017;174(11):1177-94.

  32. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY). 2017;9(6):1477.

  33. Kurien BT, Matsumoto H, Scofield RH. Nutraceutical value of pure curcumin. Pharma Mag. 2017;13(Suppl 1): S161.

  34. Zanotto-Filho A, Coradini K, Braganhol E, Schroder R, De Oliveira CM, Simoes-Pires A, Battastini AMO, Pohlmann AR, Guterres SS, Forcelini CM. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm. 2013;83(2):156-67.

  35. Tabatabaei Mirakabad FS, Akbarzadeh A, Milani M, Zarghami N, Taheri-Anganeh M, Zeighamian V, Badrzadeh F, Rahmati-Yamchi M. A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells Nanomed Biotechnol. 2016;44(1):423-30.

  36. Verderio P, Bonetti P, Colombo M, Pandolfi L, Prosperi D. Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells. Biomacromolecules. 2013;14(3):672-82.

  37. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365-83.

  38. Teng Z, Li Y, Wang Q. Insight into curcumin-loaded P-lactoglobulin nanoparticles: incorporation, particle disintegration, and releasing profiles. J Agri Food Chem. 2014;62(35):8837-47.

  39. Jose S, Anju S, Cinu T, Aleykutty N, Thomas S, Souto E. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm. 2014;474(1):6-13.

  40. Leon D, Uribe E, Zambrano A, Salas M. Implications of resveratrol on glucose uptake and metabolism. Molecules. 2017;22(3):398.

  41. Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H. Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci. 2015;1348(1):20-31.

  42. Neves AR, Lucio M, Martins S, Lima JLC, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomed. 2013;8:177.

  43. Carletto B, Berton J, Ferreira TN, Dalmolin LF, Paludo KS, Mainardes RM, Farago PV, Favero GM. Resvera-trolloaded nanocapsules inhibit murine melanoma tumor growth. Colloids Surf B: Biointerf. 2016;144:65-72.

  44. Bonferoni MC, Rossi S, Sandri G, Ferrari F, editors. Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. In: Seminars in Cancer Biology. Elsevier; 2017.

  45. Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release. 2013;172(3):1075-91.

  46. Jung K-H, Lee JH, Park JW, Quach CHT, Moon S-H, Cho YS, Lee K-H. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharma. 2015;478(1):251-57.

  47. Figueiro F, Bernardi A, Frozza RL, Terroso T, Zanotto-Filho A, Jandrey EH, Moreira JCF, Salbego CG, Edelweiss MI, Pohlmann AR. Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol. 2013;9(3):516-26.

  48. El-Gogary RI, Rubio N, Wang JT-W, Al-Jamal WT, Bourgognon M, Kafa H, Naeem M, Klippstein R, Ab- bate V, Leroux F. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano. 2014;8(2):1384-401.

  49. Bose S, Du Y, Takhistov P, Michniak-Kohn B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharma. 2013;441(1):56-66.

  50. Wang Q, Bao Y, Ahire J, Chao Y. Co-encapsulation of bio-degradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthcare Mater. 2013;2(3):459-66.

  51. Shedid H, Ismail EA, Mohamed AF. Assessment of anticancer potential of quercetin against breast, colon and colorectal cancer cell lines and related cell cycle and apoptotic gene profile: in vitro study. Imper J Interdiscipl Res. 2017;3(7):433-7.

  52. Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano. 2017;11(5):4916-25.

  53. Saha C, Kaushik A, Das A, Pal S, Majumder D. Anthracy-cline drugs on modified surface of quercetin-loaded polymer nanoparticles: a dual drug delivery model for cancer treatment. PLoS One. 2016;11(5):e0155710.

  54. Schnekenburger M, Dicato M, Diederich M. Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv. 2014;32(6):1123-32.

  55. Zhang H, Liu G, Zeng X, Wu Y, Yang C, Mei L, Wang Z, Huang L. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int J Nanomed. 2015;10:2461.

  56. Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Nanoformulation of natural products for prevention and therapy of prostate cancer. Cancer Lett. 2013;334(1):142-51.

  57. Dutta S, Sadhukhan P, Saha S, Sil PC. Regulation of oxidative stress by different naturally occurring polyphenolic compounds: an emerging anticancer therapeutic approach. React Oxy Species. 2017;3(8):81-95.

  58. Ciurana J, Rodriguez CA. Trends in nanomaterials and processing for drug delivery of polyphenols in the treatment of cancer and other therapies. Curr Drug Targets. 2017;18(2):135-46.

  59. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807-21.

  60. Aras A, Khokhar AR, Qureshi MZ, Silva MF, Sobczak-Kupiec A, Pineda E, Hechenleitner A, Farooqi AA. Targeting cancer with nano-bullets: curcumin, EGCG, resveratrol and quercetin on flying carpets. Asian Pac J Cancer Prev. 2014;15(9):3865-71.

  61. Li N, Taylor LS, Mauer LJ. Degradation kinetics of catechins in green tea powder: effects of temperature and relative humidity. J Agric Food Chem. 2011;59(11):6082-90.

  62. Dube A, Ng K, Nicolazzo JA, Larson I. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem. 2010;122(3):662-67.

  63. Tyagi N, De R, Begun J, Popat A. Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int J Pharma. 2017 Feb 25;518(1-2):220-7.

  64. Ponnuraj R, Janakiraman K, Gopalakrishnan S, Senthilnathan K, Meganathan V, Saravanan P. Formulation and characterization of epigallocatechin gallate nanoparticles. Am J Pharm Res. 2015;5:387-99.

  65. Chung JE, Tan S, Gao SJ, Yongvongsoontorn N, Kim SH, Lee JH, Choi HS, Yano H, Zhuo L, Kurisawa M. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nature Nanotechnol. 2014;9(11):907-12.

  66. Du G-J, Zhang Z, Wen X-D, Yu C, Calway T, Yuan C-S, Wang C-Z. Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients. 2012;4(11):1679-91.

  67. Braicu C, Pilecki V, Balacescu O, Irimie A, Berindan Neagoe I. The relationships between biological activities and structure of flavan-3-ols. Int J Mol Sci. 2011;12(12):9342-53.

  68. Eldar-Boock A, Polyak D, Scomparin A, Satchi-Fainaro R. Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr Op Biotechnol. 2013;24(4):682-89.

  69. Anitha A, Sreeranganathan M, Chennazhi KP, Lakshmanan V-K, Jayakumar R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N, O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur J Pharm Biopharma. 2014;88(1):238-51.

  70. Aditya N, Shim M, Lee I, Lee Y, Im M-H, Ko S. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. J Agri Food Chem. 2013;61(8):1878-83.

  71. Palange AL, Di Mascolo D, Carallo C, Gnasso A, Decuzzi P. Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomed: Nanotechnol Biol Med. 2014;10(5):e991-e1002.

  72. Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, Ganju A, Balakrishna S, Gupta BK, Zafar N. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials. 2014;35(30):8635-48.

  73. Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng: C. 2013;33(8):4802-8.

  74. Zhu R, Wu X, Xiao Y, Gao B, Xie Q, Liu H, Wang S. Synergetic effect of SLN-curcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line. Cancer Biother Radiopharm. 2013;28(8):579-87.

  75. Mayol L, Serri C, Menale C, Crispi S, Piccolo MT, Mita L, Giarra S, Forte M, Saija A, Biondi M. Curcumin loaded PLGA-poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells. Eur J Pharma Biopharma. 2015;93:37-45.

  76. Tabrez S, Priyadarshini M, Urooj M, Shakil S, Ashraf GM, Khan MS, Kamal MA, Alam Q, Jabir NR, Abuzenadah AM. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. J Environ Sci Health, Part C. 2013;31(1):67-98.

  77. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Coll Surf B: Biointerf. 2013;111:367-75.

  78. Anitha A, Deepa N, Chennazhi K, Lakshmanan V-K, Jayakumar R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta (BBA)-Gen Subj. 2014;1840(9):2730-43.

  79. Bu L, Gan L-C, Guo X-Q, Chen F-Z, Song Q, Gou X-J, Hou S-X, Yao Q. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharma. 2013;452(1):355-62.

  80. Karthikeyan S, Hoti SL, Prasad NR. Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells. Biomed Pharmacother. 2015;70:274-82.

  81. Wang G, Wang J, Luo J, Wang L, Chen X, Zhang L, Jiang S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J Biomed Mater Res Part A. 2013;101(11):3076-85.

  82. Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S. Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surfaces B: Biointerf. 2014;113:15-24.

  83. de Zampieri ALTC, Ferreira FS, Resende EC, Gaeti MPN, Diniz DGA, Taveira SF, Lima EM. Biodegradable polymeric nanocapsules based on poly (DL-lactide) for genistein topical delivery: obtention, characterization and skin permeation studies. J Biomed Nanotechnol. 2013;9(3):527-34.

  84. NR R, Tiyaboonchai W, Madhusudhan B. Fabrication and characterization of genistein encapsulated poly (D, L) lactic acid nanoparticles for pharmaceutical application. Curr Nanosci. 2013;9(2):293-302.

  85. Siddiqui IA, Bharali DJ, Nihal M, Adhami VM, Khan N, Chamcheu JC, Khan MI, Shabana S, Mousa SA, Mukhtar H. Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomed: Nanotechnol Biol Med. 2014;10(8):1619-26.

  86. Khan N, Bharali DJ, Adhami VM, Siddiqui IA, Cui H, Shabana SM, Mousa SA, Mukhtar H. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis. 2013;35(2):415-23.

  87. Sanna V, Singh CK, Jashari R, Adhami VM, Chamcheu JC, Rady I, Sechi M, Mukhtar H, Siddiqui IA. Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci Rep. 2017;7:41573.

CITADO POR
  1. Akhtar Bushra, Muhammad Faqir, Aslam Bilal, Saleemi Muhammad Kashif, Sharif Ali, Biodegradable nanoparticle based transdermal patches for gentamicin delivery: Formulation, characterization and pharmacokinetics in rabbits, Journal of Drug Delivery Science and Technology, 57, 2020. Crossref

  2. Reque Priscilla Magro, Brandelli Adriano, Encapsulation of probiotics and nutraceuticals: Applications in functional food industry, Trends in Food Science & Technology, 114, 2021. Crossref

  3. Ishfaq Maham, Akhtar Bushra, Muhammad Faqir, Sharif Ali, Akhtar Muhammad F., Hamid Irfan, Sohail Kashif, Muhammad Hosh, Antioxidant and Wound Healing Potential of Essential Oil from Citrus reticulata Peel and Its Chemical Characterization, Current Pharmaceutical Biotechnology, 22, 8, 2021. Crossref

  4. Laredo-Alcalá Elan Iñaky, De León-Zapata Miguel Ángel, Barrera-Martínez Cynthia Lizeth, Meléndez-Rentería Norma Paola, Aguilar-Gonzalez Cristóbal Noé, Candelilla wax nanoemulsions with plant-based antioxidants, nutraceuticals, and its effects on the organoleptic parameters, in Bio-Based Nanoemulsions for Agri-Food Applications, 2022. Crossref

  5. Akhtar Bushra, Muhammad Faqir, Sharif Ali, Aslam Tahira, Toxicity of nanomaterials in drug delivery, in Applications of Nanotechnology in Drug Discovery and Delivery, 2022. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain