Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Ethics in Biology, Engineering and Medicine: An International Journal
SJR: 0.123

ISSN Imprimir: 2151-805X
ISSN On-line: 2151-8068

Ethics in Biology, Engineering and Medicine: An International Journal

DOI: 10.1615/EthicsBiologyEngMed.2019030551
pages 5-16

Can the Use of CRISPR in Humans Result in Decreased Social Justice for Future Stakeholders?

Michael W. Nestor
Investigator, The Hussman Institute for Autism, 801 W. Baltimore St., Baltimore, MD 21209
Richard L. Wilson
Department of Philosophy & Religious Studies, Towson University, Towson, MD 21252


Once limited to somatic genetic editing, the use of clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technology to conduct germline editing is inevitable. Recent advances in CRISPR technology are outpacing the ability of policy makers to frame and address this powerful technology. Accepting the premise that CRISPR-mediated gene editing in humans will occur in the future, we present an anticipatory analysis of the ethical viability of CRISPR with respect to future stakeholders. We show that pluralist universalism, which holds social justice and freedom as its central tenets, illustrates that for future stakeholders, a decrease in social justice will occur if CRISPR is used in this way. We use computing's digital divide as an analog for CRISPR and demonstrate that there will be inequalities in access and advantage conferred by the use of CRISPR with respect to historically ethnic and socioeconomic disadvantaged groups. Finally, we make recommendations for policy makers with specific emphasis on international treaties that de-emphasize the role of scientists in dictating policy regarding the use of CRISPR.


  1. Doudna JA, Charpentier E. , Genome editing. The new frontier of genome engineering with CRISPRCas9. Science. 2014;346(6213):1258096.

  2. Horvath P, Barrangou R. , CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.

  3. Yosef I, Goren MG, Qimron U. , Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucl Acids Res. 2012;40(12):5569–76.

  4. Nestor MW, Artimovich E, Wilson RL., The ethics of gene editing technologies in human stem cells. Ethics Biol Eng Med Int J. 2014;5(4):323–38.

  5. Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ. , Human inducible pluripotent stem cells and autism spectrum disorder: Emerging technologies. Autism Res. 2016;9(5):513–35.

  6. Lunden JW, Durens M, Phillips AW, Nestor MW. , Cortical interneuron function in autism spectrum condition. Pediatr Res. 2019;85(2):146–54.

  7. Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. , Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Meth. 2017;14(6):547–8.

  8. Akcakaya P, Bobbin ML, Guo JA, Malagon-Lopez J, Clement K, Garcia SP, Fellows MD, Porritt MJ, Firth MA, Carreras A, Baccega T, Seeliger F, Bjursell M, Tsai SQ, Nguyen NT, Nitsch R, Mayr LM, Pinello L, Bohlooly YM, Aryee MJ, Maresca M, Joung JK, In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. 2018;561(7723):416–9.

  9. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. , Analysis of off-target effects of CRISPR/ Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24(1):132–41.

  10. Polcz S, Lewis A. , CRISPR-Cas9 and the non-germline non-controversy. J Law Biosci. 2016;3(2):413–25.

  11. Ortiz-Virumbrales M, Moreno CL, Kruglikov I, Marazuela P, Sproul A, Jacob S, Zimmer M, Paull D, Zhang B, Schadt EE, Ehrlich ME, Tanzi RE, Arancio O, Noggle S, Gandy S., CRISPR/Cas9- Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 (N141I) neurons. Acta Neuropathol Commun. 2017;5(1):77.

  12. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653–8.

  13. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang YY, Cheng L, Ye Z. , Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther. 2015;23(3):570–7.

  14. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW. , Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24(9):1526–33.

  15. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J. , CRISPR/Cas9-Mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363–72.

  16. Normile D. , Shock greets claim of CRISPR-edited babies. Science. 2018;362(6418):978–9.

  17. Hurlbut JB. , Human genome editing: Ask whether, not how. Nature. 2019;565(7738):135.

  18. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y. , Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Gen. 2016;33(5):581–8.

  19. Callaway E. , Gene-editing research in human embryos gains momentum. Nature [serial on the Internet]. 2016 Apr 19 [cited 2018 Mar 22]. Available from: in-human-embryos-gains-momentum-1.19767; April 19, 2016.

  20. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JC, Amato P, Kim JS, Kaul S, Mitalipov S, Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413–9.

  21. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J., Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–43.

  22. Midic U, Hung PH, Vincent KA, Goheen B, Schupp PG, Chen DD, Bauer DE, Van de Voort CA, Latham KE., Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin β gene in rhesus monkey embryos. Hum Mol Genet. 2017;26(14):2678–89.

  23. Webber D. , As a species, we have a moral obligation to enhance ourselves. [monograph on the Internet]. 2014 Feb 19 [cited 2018 Mar 22]. Available from: the-ethics-of-genetically-enhanced-monkey-slaves/.

  24. Rojahn SY. , Rewriting life: Genome surgery. MIT Technol Rev [serial on the Internet]. 2017 Mar 20 [cited 2018 Mar 22]. Available from:

  25. Hester K, Mullins M, Murphy F, Tofail SAM. , Anticipatory ethics and governance (AEG): Towards a future care orientation around nanotechnology. NanoEthics. 2015;9(2):123–36.

  26. Kauffmann W, Baird FE. , Philosophic classics: Ancient philosophy. Upper Saddle River, NJ: Prentice Hall; 2003.

  27. Layard R, Chisholm D, Patel V, Saxena S. , Mental illness and unhappiness. Berlin: German Institute for Economic Research (Deutsches Institut fur Wirtschaftsforschung). Das Sozio-oekonomische Panel (SOEP) Study on Multidisciplinary Panel Data Research; 2013. Report No. 600.

  28. Lyubomirsky S, Sheldon K, Schkade D. , Pursuing happiness: The architecture of sustainable change. Rev Gen Psych. 2005;9(2):111–31.

  29. Audi R. , Moral value and human diversity. New York: Oxford University Press, Inc.; 2007.

  30. Waymack MH. , Ethical theories. Part 1. In: Hoppe EA, editor. Ethical issues in aviation. Farnham, UK: Ashgate Publishing; 2011.

  31. Werhane PH. , Moral imagination and systems thinking. J Bus Ethics. 2002;38(1):33–42.

  32. Jamison KR. , Mood disorders and patterns of creativity in British writers and artists. Psychiatry. 1989;52(2):125–34.

  33. Rogers EM. , The digital divide. Convergence. 2001;7(4):96–111.

  34. van Dijk JAGM, Hacker K. , The digital divide as a complex and dynamic phenomenon. Inform Soc. 2003;19(4):315–26.

  35. Sakamura K, Koshizuka N. , Ubiquitous computing technologies for ubiquitous learning. In: IEEE International Workshop on Wireless and Mobile Technologies in Education (WMTE’05); 2005 Nov 28–30; Tokushima, Japan. IEEE; 2005. pp. 11–20. DOI: 10.1109/WMTE.2005.67

  36. Gordon L. , Global digital divide persists but is narrowing [monograph on the Internet]. London: Euromonitor International; 2001 [cited 2018 March 22]. Available from: https://blog.euromonitor .com/global-digital-divide-persists-but-is-narrowing-1/.

  37. Sarewitz D. , CRISPR: Science can’t solve it. Nature [serial on the Internet]. 2015 Jun 23 [cited 2018 Mar 22]. Available from:

  38. Pei D, Beier DW, Levy-Lahad E, Marchant G, Rossant J, Izpisua Belmonte JC, Lovell-Badge R, Jaenisch R, Charo A, Baltimore D. , Human embryo editing: Opportunities and importance of transnational cooperation. Cell Stem Cell. 2017;21(4):423–6.

  39. Jasanoff S, Hurlbut JB. , A global observatory for gene editing. Nature. 2018;555(7697):435–7.

Articles with similar content:

Ethical Mentoring of Slightly Above-Average College Students Wishing to Apply to Professional School−"That is the Question!"
Ethics in Biology, Engineering and Medicine: An International Journal, Vol.10, 2019, issue 1
Gregory W. Buck
Governance Lessons for CRISPR/Cas9 from the Missed Opportunities of Asilomar
Ethics in Biology, Engineering and Medicine: An International Journal, Vol.6, 2015, issue 3-4
Shobita Parthasarathy
Journal of Women and Minorities in Science and Engineering, Vol.14, 2008, issue 4
Stacy G. Birmingham, Mara H. Wasburn
Journal of Women and Minorities in Science and Engineering, Vol.24, 2018, issue 1
Marisa Román-Onsalo, Margarita Infante-Perea, Elena Navarro-Astor
Journal of Women and Minorities in Science and Engineering, Vol.21, 2015, issue 2
Jasna Jovanovic, Mary A Armstrong