Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Medicinal Mushrooms
Fator do impacto: 1.423 FI de cinco anos: 1.525 SJR: 0.431 SNIP: 0.716 CiteScore™: 2.6

ISSN Imprimir: 1521-9437
ISSN On-line: 1940-4344

Volumes:
Volume 22, 2020 Volume 21, 2019 Volume 20, 2018 Volume 19, 2017 Volume 18, 2016 Volume 17, 2015 Volume 16, 2014 Volume 15, 2013 Volume 14, 2012 Volume 13, 2011 Volume 12, 2010 Volume 11, 2009 Volume 10, 2008 Volume 9, 2007 Volume 8, 2006 Volume 7, 2005 Volume 6, 2004 Volume 5, 2003 Volume 4, 2002 Volume 3, 2001 Volume 2, 2000 Volume 1, 1999

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2020033766
pages 145-159

Effect of the King Oyster Culinary-Medicinal Mushroom Pleurotus eryngii (Agaricomycetes) Basidiocarps Powder to Ameliorate Memory and Learning Deficit in Ability in Aβ-Induced Alzheimer's Disease C57BL/6J Mice Model

Chih-Hung Liang
Department of Nutrition and Health Science, Chungchou Institute of Technology, Yuanlin, Changhua 51003, Taiwan, ROC; Department of Food Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taichung, Taiwan
Po-Chang Huang
Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Hsing-Da Road, Taichung 40227, Taiwan
Jeng-Leun Mau
Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Hsing-Da Road, Taichung 40227, Taiwan
Shen-Shih Chiang
Department of Food Science and Biotechnology, National Chung Hsing University, No. 145 Hsing-Da Road, Taichung 40227, Taiwan

RESUMO

One of the major causes of Alzheimer's disease (AD) is oxidative stress, which accelerates β-amyloid peptide (AP) plaque and neurofibrillary tangle accumulation in the brain. Pleurotus eryngii is known to be rich in antioxidants, including ergothioneine, adenosine, and polyphenol, which can reduce oxidative stress-related aging. The aim of this study was to investigate the proximate and functional composition of P. eryngii, and evaluate the cognitive effects of low (LPE), medium (MPE), and high (HPE) P. eryngii dosages in an Aβ-induced Alzheimer's disease C57BL/6J mouse model. Mice fed P. eryngii for six weeks showed no adverse effects on body weight gain, food intake efficiency, serum biochemical parameters, and liver and kidney histopathological features. The relative brain weight was significantly lower in Aβ-injected mice (p < 0.05). Further, P. eryngii was shown to delay brain atrophy. Reference memory behavioral tasks showed that LPE, MPE, and HPE significantly decreased escape latency (49-85%) and distance (53-69%, p < 0.05). Probe and T-maze tasks showed that P. eryngii potently ameliorated memory deficit in mice. An AD pathology index analysis showed that P. eryngii significantly decreased levels of brain phosphorylated τ-protein, Aβ plaque deposition, malondialdehyde, and protein carbonyl (p < 0.05). P. eryngii may therefore promote memory and learning capacity in an Aβ-induced AD mouse model.

Referências

  1. Patterson C. World Alzheimer Report 2018-the state of the art of dementia research: new frontiers. London: Alzheimer's Disease International; 2018.

  2. Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL. Ageing and neurodegenerative diseases. Ageing Res Rev. 2010;1:36-46.

  3. Kumar A, Singh A, Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195-203.

  4. Koudinov A, Kezlya E, Koudinova N, Berezov T. Amyloid-beta, tau protein, and oxidative changes as a physiological compensatory mechanism to maintain CNS plasticity under Alzheimer's disease and other neurodegenerative conditions. J Alzheimers Dis. 2009;18(2):381-400.

  5. Townsend KP, Pratico D. Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J. 2005;19:1592-1601.

  6. Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta. 2012;1822(5):784-93.

  7. Rego AC, Santos MS, Oliveira CR. Adenosine triphosphate degradation products after oxidative stress and metabolic dysfunction in cultured retinal cells. J Neurochem. 1997;69(3):1228-35.

  8. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270-8.

  9. Shivanand P. Review on Alzheimer's disease: its cause, symptoms, and treatment at worldwide. Int J Appl Biol Pharm Technol. 2009;1:112-20.

  10. Gyorfi J, Hajdu CS. Casing-material experiments with P. eryngii. Int J Horticult Sci. 2007;13:33-36.

  11. Yildiz S, Yildiz UC, Geze ED, Temiz A. Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochem. 2002;38:301-6.

  12. Liang CH, Huang LY, Ho KJ, Lin SY, Mau JL. Submerged cultivation of mycelium with high ergothioneine content from the culinary-medicinal king oyster mushroom Pleurotus eryngii (higher Basidiomycetes) and its composition. Int J Med Mushrooms. 2013;15(2):153-64.

  13. Liang CH, Ho KJ, Huang LY, Tsai CH, Lin SY, Mau JL. Antioxidant properties of fruiting bodies, mycelia, and fermented products of the culinary-medicinal king oyster mushroom, Pleurotus eryngii (higher Basidiomycetes), with high ergothioneine content. Int J Med Mushrooms. 2013;15(3):267-75.

  14. Li JP, Lei YL, Zhan H. The effects of the king oyster mushroom Pleurotus eryngii (higher Basidiomycetes) on glycemic control in alloxan-induced diabetic mice. Int J Med Mushrooms. 2014;16(3):219-25.

  15. Chien RC, Yang YC, Lai EI, Mau JL. Anti-inflammatory effects of extracts from the medicinal mushrooms Hypsizygus marmoreus and Pleurotus eryngii (Agaricomycetes). Int J Med Mushrooms. 2016;18(6):477-87.

  16. Alam N, Yoon KN, Lee JS, Cho HJ, Shim MJ, Lee TS. Dietary effect of Pleurotus eryngii on biochemical function and histology in hypercholesterolemic rats. Saudi J Biol Sci. 2011;18(4):403-09.

  17. Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int. 2001;38(2):107-25.

  18. Jang JH, Aruoma OI, Jen LS, Chung HY, Surh YJ. Ergothioneine rescues PC12 cells from beta-amyloid- induced apoptotic death. Free Radic Biol Med. 2004;36(3):288-99.

  19. Association of Official Analytical Chemists. Official methods of analysis. 14.091, 14.103, 14.093, 14.111 and 14.108, 15th ed. Washington, D.C: Association of Official Analytical Chemists; 1990.

  20. Crisan EV, Sands A. Nutritional value. In: Chang ST, Hayes WA, editors. The biology and cultivation of edible mushrooms. New York: Academic Press; 1978. p. 137-65.

  21. Dubost NJ, Beelman RB, Peterson D, Royse DJ. Identification and quantification of ergothioneine in cultivated mushrooms by liquid chromatography-mass spectroscopy. Int J Med Mushrooms. 2006;8(3):215-22.

  22. Taga MS, Miller EE, Pratt DE. Chia seeds as a source of natural lipid antioxidants. J Am Chem Soc. 1984;61(5):928-31.

  23. James CS. Analytical chemistry of foods. London: Chapman & Hall; 1995. p. 124-25.

  24. Ranter M. FDA pharmacogenomics guidance sends clear message to industry. Nat Rev Drug Discov. 2005;4:359.

  25. Zhao Y, Zhao, B. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev. 2013;31:6523-33.

  26. Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 1998;8:447-53.

  27. Jhoo JH, Kim HC, Nabeshima T, Yamada K, Shin EJ, Jhoo WK, Kim W, Kang KS, Jo SA, Woo JI. Beta-amyloid (1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behav Brain Res. 2004;155(2):85-196.

  28. Franklin KB, Paxinos G. The mouse brain in stereotaxic coordinates. Elsevier Academic: London; 2008.

  29. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47-60.

  30. Deacon RM, Rawlins JN. T maze alternation in the rodent. Nat Protoc. 2006;1(1):7-12.

  31. Mazzaccara C, Labruna G, Cito G, Scarfo M, Felice MD, Pastore L, Sacchetti L. Age-related reference intervals of the main bio-chemical and hematological parameters in C57BL/6J, 129SV/EV and C3H/HeJ mouse strains. PLoS One. 2008;3(11):e3772.

  32. Alam N, Yoon KN, Lee JS, Cho HJ, Shim MJ, Lee TS. Dietary effect of Pleurotus eryngii on biochemical function and histology in hypercholesterolemic rats. Saudi J Biol Sci. 2011;18(4):403-9.

  33. Lerner AB, Case JD, Heinzelmann RV. Structure of melatonin. J Am Chem Soc. 1959;81:6084-85.

  34. He H, Dong W, Huang F. Anti-amyloidogenic and anti-apoptotic role of melatonin in Alzheimer disease. Curr Neuropharmacol. 2010;8:211-17.

  35. Bejarano I, Monllor F, Marchena AM, Ortiz A, Lozano G, Jimenez MI, Gaspar P, Garda JF, Pariente JA, Rodriguez AB, Espino J. Exogenous melatonin supplementation prevents oxidative stress-evoked DNA damage in human spermatozoa. J Pineal Res. 2014;57(3):333-39.

  36. Rodriguez C, Mayo JC, Sainz RM, Antohn I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1-9.

  37. Ali T, Kim MO. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3p pathway in the mouse hippocampus. J Pineal Res. 2015;59(1):47-59.

  38. Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging. 2002;23(4):639-44.

  39. Yang NC, Lin HC, Wu JH, Ou HC, Chai YC, Tseng CY, Liao JW, Song TY. Ergothioneine protects against neuronal injury induced by p-amyloid in mice. Food Chem Toxicol. 2012;50(11):3902-11.

  40. Miguel-Hidalgo JJ, Cacabelos R. Beta-amyloid (1-40)-induced neurodegeneration in the rat hippocampal neurons of the CA1 subfield. Acta Neuropathol. 1998;95(5):455-65.

  41. Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adhes Migr. 2009;3:88-93.


Articles with similar content:

Aqueous Extract of Culinary-Medicinal Royal Sun Mushroom, Agaricus brasiliensis S. Wasser et al. (Agaricomycetideae) Effects on Immunodepression in Mice
International Journal of Medicinal Mushrooms, Vol.12, 2010, issue 3
Elisabete Fantuzzi, Lucilene Rezende Anastacio, Maria Cristina Dantas Vanetti, Rosa Maria Esteves Arantes, Sergio Oliveira de Paula, Sergio Luis Pinto da Matta, Jacques Robert Nicoli
Safety Evaluation of an Aqueous Extract of Termitomyces robustus (Agaricomycetes) in Wistar Rats
International Journal of Medicinal Mushrooms, Vol.21, 2019, issue 2
Okezie Emmanuel, Victor Chibueze Ude, Ozioma Onyero, Eziuche Amadike Ugbogu, Emmanuel Iroha Akubugwo, Cynthia Ibe, Nduka Ozoji Okomba
Turmeric Bioprocessed with Mycelia from the Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Protects Mice Against Salmonellosis
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 4
Sung Phil Kim, Seok Hyun Nam, Mendel Friedman, Sang Jong Lee
Skin Mucus Protein Profile, Immune Parameters, Immune-Related Gene Expression, and Growth Performance of Rainbow Trout (Oncorhynchus mykiss) Fed White Button Mushroom (Agaricus bisporus) Powder
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 4
Roghieh Safari, Seyed Hossein Hoseinifar, Omid Amiri, Hamed Kolangi Miandare, Ali Shabni
A Putative Association of Interleukin-1β Promoter Polymorphisms and IL-1β Levels in Saudi Diabetic Patients
Critical Reviews™ in Eukaryotic Gene Expression, Vol.28, 2018, issue 4
Shams Tabrez, Ghulam Md. Ashraf, Salwa Hindawi