Inscrição na biblioteca: Guest
International Journal of Fluid Mechanics Research

Publicou 6 edições por ano

ISSN Imprimir: 2152-5102

ISSN On-line: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

An Experimental Study on Droplet Interactions

Volume 24, Edição 4-6, 1997, pp. 450-460
DOI: 10.1615/InterJFluidMechRes.v24.i4-6.10
Get accessGet access

RESUMO

This paper describes a basic experiment on rectilinear mono sited droplets stream allowing the improvement of the understanding of the physical processes (droplet-droplet interaction, droplet evaporation, ...) occurring in dense sprays. The droplet stream is investigated at different locations downstream by optical measurements to get the droplet diameter, temperature and velocity with or without combustion. To study the droplet stream in low interaction an electrostatic droplet deflector has been developed to increase the droplet spacing. Ethanol was the simulation fluid used during these experiments. The droplet stream was investigated in cold conditions to study the influence of droplet spacing on the drag coefficient. The distance parameter is defined by the ratio of droplet spacing to droplet size. The results are compared to the correlations of Mulholland and Zhu. These correlations overestimate the drag coefficient for distance parameters lower than 20. We propose a new correlation to improve the prediction of the drag coefficient for a large range of spacing parameter 2 < C < 40. The droplet stream was ignited as it passes through an electrically heated coil. The experimental results are compared to the classical D2 law, which overestimates the droplet evaporation in strong interaction. The preliminary results concern a burning droplet stream with an initial droplet diameter Dg0 = 124 μm and velocity Vg0 = 8.3 ms−1 and C0 = 2. For a distance parameter C = 12, the results do not match the D2 law showing the usefulness of the droplet deflector.

CITADO POR
  1. Holländer W., Zaripov S.K., Hydrodynamically interacting droplets at small Reynolds numbers, International Journal of Multiphase Flow, 31, 1, 2005. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain