Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Imprimir: 2152-5102
ISSN On-line: 2152-5110

Volumes:
Volume 47, 2020 Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v32.i2.10
pages 123-138

Heat Transfer in Magnetohydrodynamic Hiemenz Flow of a Micropolar Fluid

Mohamed F. El-Amin
Mathematics Department, Aswan Faculty of Science, South Valley University, Aswan, 81258; King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
N. A. Ebrahiem
Mathematics Department, Faculty of Science, South Valley University Aswan 81528, Egypt
Rama Subba Reddy Gorla
Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115 USA; Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA; Department of Mechanical & Civil Engineering, Purdue University Northwest, Westville, IN 46391, USA

RESUMO

A boundary layer analysis is presented for studying the effects of heat transfer and transverse magnetic field on Hiemenz flow of a micropolar incompressible, viscous, electrically conducting fluid impinging normal to a plate. Numerical solutions for the governing momentum, angular momentum and energy equations are given. A discussion has been provided for the effect of Hartman number, Prandtl number and micropolar parameters on Hiemenz flow (two-dimensional flow of a fluid near a stagnation point). Results for the details of the velocity, angular velocity and temperature distributions as well as the skin friction, wall couples stress and the rate of heat transfer are shown graphically.


Articles with similar content:

Numerical Solution to the MHD Flow of Micropolar Fluid Between Parallel Porous Plates
International Journal of Fluid Mechanics Research, Vol.35, 2008, issue 4
Mekonnen Shiferaw, D. Srinivasacharya
RADIATION EFFECT ON MHD STAGNATION-POINT FLOW OF A NANOFLUID OVER A NONLINEAR STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITION
Heat Transfer Research, Vol.47, 2016, issue 9
Abdul Rahman M. Kasim, Mohd Zuki Salleh, Sharidan Shafie, Muhammad Imran Anwar
NONLINEAR CONVECTION IN CASSON FLUID FLOW OVER A SHRINKING/STRETCHING SHEET EMBEDDED IN POROUS MEDIUM WITH INCLINED MAGNETIC FIELD AND CONVECTIVE BOUNDARY CONDITIONS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Rakesh Choudhary, Rakesh Choudhary
CHEMICALLY REACTIVE HYDROMAGNETIC FLOW OVER A STRETCHABLE OSCILLATORY ROTATING DISK WITH THERMAL RADIATION AND HEAT SOURCE/SINK: A NUMERICAL STUDY
Heat Transfer Research, Vol.50, 2019, issue 15
Sabir A. Shehzad, Amar Rauf, Zaheer Abbas
Mixed Convection Flow of Micropolar Fluid on a Horizontal Plate Moving in Parallel to a Free Stream
International Journal of Fluid Mechanics Research, Vol.31, 2004, issue 5
I. A. Hassanien, Rama Subba Reddy Gorla, N. M. Moursy