Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN On-line: 2152-5110

Volumes:
Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2019025743
pages 441-457

OSCILLATIONS AND PARAMETRIC INSTABILITY OF A CYLINDRICAL DROP OF A LOW-VISCOUS LIQUID

Alexey A. Alabuzhev
Institute of Continuous Media Mechanics UB RAS, Perm, Russia, 614013 or Perm State University, Perm, Russia, 614990

RESUMO

The focus of the research is on eigen oscillations and parametric instability of oscillations induced to a cylindrical drop surrounded by the gas whose effect is neglected. Axisymmetrical and translational vibrations are studied. Viscous boundary layer on the solid surface is taken into account, given the contact line is stationary. Eigen frequencies have been determined. In the first order of expansion, a correction to frequency is obtained, which is caused by dissipation in the viscous boundary layer. Regions of parametric instability have been found. Taking viscosity into account expectedly leads to the appearance of the vibrations amplitude terminal threshold and the resonance frequency shift.

Referências

  1. Alabuzhev, A.A., Behavior of a Cylindrical Bubble under Vibrations, Comput. Contin. Mech., vol. 7, no. 2, pp. 151-161, 2014.

  2. Alabuzhev, A.A., Axisymmetric Oscillations of a Cylindrical Droplet with a Moving Contact Line, J. Appl. Mech. Tech. Phys., vol. 57, no. 6, pp. 1006-1015,2016a.

  3. Alabuzhev, A.A., Axisymmetric Oscillations of a Cylindrical Drop in the Final Volume of Fluid, Comput. Contin. Mech, vol. 9, no. 3, pp. 316-330, 2016b.

  4. Alabuzhev, A.A., Translational Oscillations of a Cylindrical Drop in a Bounded Volume of Fluid, Comput. Contin. Mech., vol. 9, no. 4, pp. 453-465, 2016c.

  5. Alabuzhev, A.A. and Kashina, M.A., The Oscillations of Cylindrical Drop under the Influence of a Nonuniform Alternating Electric Field, J. Phys. Con.f. Ser, vol. 681, p. 012042,2016.

  6. Alabuzhev, A.A. and Kaysina, M.I., The Translational Mode of Natural Oscillations of a Cylindrical Bubble, Bull. Perm Univ. Phys, vol. 1, no. 24, pp. 35-41,2015a.

  7. Alabuzhev, A.A. and Kaysina, M.I., Effect of Motion of the Contact Line on the Axisymmetric Oscillations of a Cylindrical Bubble, Bull. Perm Univ. Phys, vol. 2, no. 30, pp. 56-68, 2015b.

  8. Alabuzhev, A.A. and Kaysina, M.I., The Eigen Azimuthal Vibrations of a Cylindrical Bubble in an Finite Volume Vessel, Bull. Perm Univ. Phys, vol. 3, no. 31, pp. 38-47, 2015c.

  9. Alabuzhev, A.A. and Kaysina, M.I., The Translational Oscillations of a Cylindrical Bubble in a Bounded Volume of a Liquid with Free Deformable Interface, J. Phys. Conf. Ser, vol. 681, p. 012043, 2016.

  10. Alabuzhev, A.A. and Lyubimov, D.V., Behavior of a Cylindrical Drop under Multi-Frequency Vibration, Fluid Dyn, vol. 40, no. 2, pp. 183-192,2005.

  11. Alabuzhev, A.A. and Lyubimov, D.V., Effect of the Contact-Line Dynamics on the Natural Oscillations of a Cylindrical Droplet, J. Appl. Mech. Tech. Phys, vol. 48, no. 5, pp. 686-693, 2007.

  12. Alabuzhev, A.A. and Lyubimov, D.V., Effect of the Contact-Line Dynamics on the Oscillations of a Compressed Droplet, J. Appl. Mech. Tech. Phys, vol. 53, no. 1, pp. 9-19, 2012.

  13. Benilov, E.S., Stability of a Liquid Bridge under Vibration, Phys. Rev. E, vol. 93, no. 6, p. 063118, 2016.

  14. Borkar, A. and Tsamopoulos, J., Boundary-Layer Analysis of the Dynamics of Axisymmetric Capillary Bridges, Phys. Fluids Fluid Dyn, vol. 3, no. 12, pp. 2866-2874, 1991.

  15. Bostwick, J.B. and Steen, P.H., Stability of Constrained Capillary Surfaces, Annu. Rev. Fluid Mech., vol. 47, no. 1, pp. 539-568, 2015.

  16. Chen, C., Zeng, Z., Mizuseki, H., and Kawazoe, Y., Thermocapillary Convection of Liquid Bridge under Axisymmetric Magnetic Fields, Mater. Trans., vol. 49, no. 11, pp. 2566-2571, 2008.

  17. Chen, T.-Y. and Tsamopoulos, J., Nonlinear Dynamics of Capillary Bridges: Theory, J. Fluid Mech., vol. 255, pp. 373-409,1993.

  18. Demin, V.A., Problem of the Free Oscillations of a Capillary Bridge, Fluid Dyn., vol. 43, no. 4, pp. 524-532, 2008.

  19. Fayzrakhmanova, I.S. and Straube, A.V., Stick-Slip Dynamics of an Oscillated Sessile Drop, Phys. Fluids, vol. 21, no. 7, p. 072104, 2009.

  20. Fayzrakhmanova, I.S., Straube, A.V., and Shklyaev, S., Bubble Dynamics Atop an Oscillating Substrate: Interplay of Compressibility and Contact Angle Hysteresis, Phys. Fluids, vol. 23, no. 10, p. 102105, 2011.

  21. Ferrera, C., Cabezas, M.G., and Montanero, J.M., An Experimental Analysis of the Linear Vibration of Axisymmetric Liquid Bridges, Phys. Fluids, vol. 18, no. 8, p. 082105, 2006.

  22. Ferrera, C., Herrada, M.A., and Montanero, J.M., Analysis of a Resonance Liquid Bridge Oscillation on Board of the International Space Station, Eur. J. Mech.-B/Fluids, vol. 57, pp. 15-21, 2016.

  23. Hocking, L.M., The Damping of Capillary-Gravity Waves at a Rigid Boundary, J. Fluid Mech., vol. 179, pp. 253-266, 1987.

  24. Kartavykh, N.N. and Shklyaev, S.V., On the Parametric Resonance of a Semicylindrical Drop on an Oscillating Solid Substrate, Bull. Perm Univ. Phys, vol. 1, no. 6, pp. 23-28,2007.

  25. Kaysina, M.I., Azimuthal Modes of Eigen Oscillations of a Cylindrical Bubble, Bull. Perm Univ. Math. Mech. Comput. Sci., vol. 2, no. 29, pp. 37-45,2015, accessed June 7,2017, from http://vestnik.psu.ru/docs/2015/274/20152421.doc.

  26. Khenner, M.V., Lyubimov, D.V., Belozerova, T.S., and Roux, B., Stability of Plane-Parallel Vibrational Flow in a Two-Layer System, Eur. J. Mech.-B/Fluids, vol. 18, no. 6, pp. 1085-1101, 1999.

  27. Klingner, A., Buehrle, J., and Mugele, F., Capillary Bridges in Electric Fields, Langmuir, vol. 20, no. 16, pp. 6770-6777, 2004.

  28. Kumar, K. and Tuckerman, L.S., Parametric Instability of the Interface between Two Fluids, J. Fluid Mech., vol. 279, pp. 49-68, 1994.

  29. Kumar, S., Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines, Annu. Rev. Fluid Mech., vol. 47, no. 1,pp. 67-94,2015.

  30. Langbein, D., Falk, F., and GroBbach, R., Oscillations of Liquid Columns under Microgravity, Adv. Space Res., vol. 16, no. 7, pp. 23-26, 1995.

  31. Lyubimov, D.V. and Cherepanov, A.A., On the Nonlinear Theory of Parametrically Excited Waves on the Surface of a Viscous Fluid, in Some Problems of Stability of a Liquid Surface, Sverdlovsk, Russia: Institute of Continuous Media Mechanics, pp. 54-76, 1984.

  32. Lyubimov, D.V., Khenner, M.V., and Shotz, M.M., Stability of a Fluid Interface under Tangential Vibrations, Fluid Dyn., vol. 33, no. 3, pp. 318-323, 1998.

  33. Lyubimov, D.V., Lyubimova, T.P., and Cherepanov, A.A., Dinamika Poverkhnostey Razdela v Vibratsionnykh Poliakh, Moscow, Russia: FIZMATLIT, 2003.

  34. Mampallil, D., Burak Eral, H., Staicu, A., Mugele, F., and van den Ende, D., Electrowetting-Driven Oscillating Drops Sandwiched between Two Substrates, Phys. Rev. E, vol. 88, no. 5, p. 053015,2013.

  35. Martin, E., Martel, C., and Vega, J.M., Drift Instability of Standing Faraday Waves, J. Fluid Mech, vol. 467, pp. 57-79, 2002.

  36. Martinez, I. and Eyer, A., Liquid Bridge Analysis of Silicon Crystal Growth Experiments under Microgravity, J. Cryst. Growth, vol. 75, no. 3, pp. 535-544, 1986.

  37. Martinez, I., Perales, J.M., and Meseguer, J., Non-Linear Response of a Liquid Bridge to a Sinusoidal Acceleration under Micro- gravity, Exp. Fluids, vol. 37, no. 6, pp. 775-781,2004.

  38. Meseguer Ruiz, J., Perales Perales, J.M., Martinez Herranz, I., Bezdenejnykh, N.A., and Sans, A., Hydrostatic Instabilities in Floating Zone Cristal Growth Process, Curr. Top. Cryst. Growth Res., vol. 5, pp. 27-42, 1999.

  39. Miles, J. and Henderson, D., Parametrically Forced Surface Waves, Annu. Rev. Fluid Mech., vol. 22, no. 1, pp. 143-165,1990.

  40. Mollot, D.J., Tsamopoulos, J., Chen, T.-Y., and Ashgriz, N., Nonlinear Dynamics of Capillary Bridges: Experiments, J. Fluid Mech., vol. 255, pp. 411-435, 1993.

  41. Montanero, J.M., Linear Dynamics of Axisymmetric Liquid Bridges, Eur. J. Mech.-B/Fluids, vol. 22, no. 2, pp. 167-178, 2003.

  42. Montanero, J.M., Influence of the Outer Bath on the Eigenfrequencies of Rotating Axisymmetric Liquid Bridges, Theor. Comput. Fluid Dyn, vol. 17, no. 3, pp. 213-223, 2004.

  43. Montanero, J.M., Ferrera, C., and Shevtsova, V.M., Experimental Study of the Free Surface Deformation due to Thermal Convection in Liquid Bridges, Exp. Fluids, vol. 45, no. 6, pp. 1087-1101, 2008.

  44. Morse, S.F., Thiessen, D.B., and Marston, P.L., Capillary Bridge Modes Driven with Modulated Ultrasonic Radiation Pressure, Phys. Fluids, vol. 8, no. 1, pp. 3-5,1996.

  45. Nayfeh, A.H., Perturbation Methods, Wiley Classics Library, New York: John Wiley & Sons, 2000.

  46. Nevolin, V.G., Parametric Excitation of Surface Waves, J. Eng. Phys., vol. 47, no. 6, pp. 1482-1494, 1984.

  47. Rivas, D. and Meseguer, J., One-Dimensional Self-Similar Solution of the Dynamics of Axisymmetric Slender Liquid Bridges, J. Fluid Mech., vol. 138, pp. 417-429,1984.

  48. Shklyaev, S., Alabuzhev, A.A., and Khenner, M., Influence of a Longitudinal and Tilted Vibration on Stability and Dewetting of a Liquid Film, Phys. Rev. E, vol. 79, no. 5, p. 051603,2009.

  49. Shklyaev, S., Alabuzhev, A.A., and Khenner, M., Marangoni Convection in a Thin Film on a Vertically Oscillating Plate, Phys. Rev. E, vol. 92, no. 1, p. 013019, 2015.

  50. Shklyaev, S. and Straube, A.V., Linear Oscillations of a Compressible Hemispherical Bubble on a Solid Substrate, Phys. Fluids, vol. 20, no. 5, p. 052102,2008.

  51. Sorokin, V.I., On the Effect of the Spouting of Drops from the Surface of a Vertically Oscillating Liquid, Acoust. Phys., vol. 3, no. 3, pp. 262-273,1957, accessed August 7, 2017, from http://www.akzh.ru/pdf/1957_3_262-273.pdf.

  52. Talib, E., Jalikop, S.V., and Juel, A., The Influence of Viscosity on the Frozen Wave Instability: Theory and Experiment, J. Fluid Mech., vol. 584, pp. 45-68, 2007.

  53. Talib, E. and Juel, A., Instability of a Viscous Interface under Horizontal Oscillation, Phys. Fluids, vol. 19, no. 9, p. 092102,2007.

  54. Thiessen, D.B., Marr-Lyon, M.J., and Marston, P.L., Active Electrostatic Stabilization of Liquid Bridges in Low Gravity, J. Fluid Mech., vol. 457, pp. 285-295, 2002.

  55. Tsamopoulos, J., Chen, T.-Y., and Borkar, A., Viscous Oscillations of Capillary Bridges, J. Fluid Mech., vol. 235, pp. 579-609, 1992.

  56. Vega, E.J., Montanero, J.M., Ferrera, C., and Herrada, M.A., An Experimental Technique to Produce Micrometer Waves on a Cylindrical Sub-Millimeter Free Surface, Meas. Sci. Technol., vol. 25, no. 7, p. 075303, 2014.

  57. Ward, T. and Walrath, M., Electrocapillary Drop Actuation and Fingering Instability in a Planar Hele-Shaw Cell, Phys. Rev. E, vol. 91, no. 1,p. 013012,2015.

  58. Wei, W., Thiessen, D.B., and Marston, P.L., Hysteresis and Mode Coupling in Capillary Bridge Oscillations: Observations, Phys. Rev. E, vol. 72, no. 6, p. 067304, 2005.

  59. Yano, T. and Nishino, K., Effect of Liquid Bridge Shape on the Oscillatory Thermal Marangoni Convection, Eur. Phys. J. Spec. Top, vol. 224, no. 2, pp. 289-298, 2015.

  60. Yoshikawa, H.N. and Wesfreid, J.E., Oscillatory Kelvin-Helmholtz Instability. Part 1. A Viscous Theory, J. Fluid Mech., vol. 675, pp. 223-248,2011.

  61. Zayas, F., Alexander, J.I.D., Meseguer, J., and Ramus, J.-F., On the Stability Limits of Long Nonaxisymmetric Cylindrical Liquid Bridges, Phys. Fluids, vol. 12, no. 5, pp. 979-985, 2000.

  62. Zhang, Y., Huang, H., Zhang, X., Zou, Y., and Tang, S., The Effect of Aspect Ratio and Axial Magnetic Field on Thermocapillary Convection in Liquid Bridges with a Deformable Free-Surface, Eng. Appl. Comput. Fluid Mech., vol. 10, no. 1, pp. 17-29, 2016.


Articles with similar content:

ONSET OF DOUBLE DIFFUSIVE CONVECTION IN A MAXWELL FLUID SATURATED ANISOTROPIC POROUS LAYER WITH INTERNAL HEAT SOURCE
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 4
S . N. Gaikwad, M. Dhanraj
Numerical Investigations of Oscillatory Motions of a Rotating Viscoelastic Nanofluid Layer in Natural Convection
International Journal of Fluid Mechanics Research, Vol.41, 2014, issue 3
Veena Sharma, Renu Kumari, Anuradha Chowdhary
THE STABILITY OF LAMINAR BOUNDARY LAYER ONTHEPLATE UNDER ELECTROHYDRODYNAMIC ACTION
TsAGI Science Journal, Vol.40, 2009, issue 1
Alexander Petrovich Kuryachii
THE INSTABILITY OF HOLLOW ELECTRON BEAM INTERACTING WITH PLASMA-LIKE MEDIUM
Telecommunications and Radio Engineering, Vol.75, 2016, issue 16
Yu. O. Averkov, Yu. V. Prokopenko, Vladimir M. Yakovenko
ONSET OF DOUBLE DIFFUSIVE REACTION-CONVECTION IN AN ANISOTROPIC POROUS LAYER WITH INTERNAL HEAT SOURCE
Journal of Porous Media, Vol.18, 2015, issue 6
S . N. Gaikwad, M. Dhanraj