Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN Imprimir: 2152-5102
ISSN On-line: 2152-5110

Volumes:
Volume 47, 2020 Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v24.i1-3.250
pages 251-260

Spray Break-Up Process of Diesel Fuel Investigated Close to the Nozzle

A. Fath
Lehrstuhl für Technische Thermodynamik (LTT) Friedrich-Alexander Universität Erlangen-Nurnberg Am Weichselgarten 8, D-91058 Erlangen, Germany
K.-U. Munch
Lehrstuhl für Technische Thermodynamik (LTT) Friedrich-Alexander Universität Erlangen-Nurnberg Am Weichselgarten 8, D-91058 Erlangen, Germany
Alfred Leipertz
Lehrstuhl fur Technische Thermodynamik (LTT), Universitat Erlangen-Nurnberg,Am Weichselgarten 8, D-91058 Erlangen, Germany; ESYTEC Energie- und Systemtechnik GmbH Erlangen, Am Weichselgarten 6, D-91058 Erlangen, Germany

RESUMO

The most common spray break-up models for fuel atomization are presented and discussed. Different break-up models show different spray characteristics and none of the presented models can explain the phenomena observed in several recent works. Up to now there is no confirmation for one of them. Here, a light sheet technique was used to investigate the spray structures close to the nozzle orifice by means of a new detection optics. The experimental results show a liquid jet which is dispersed with cavitation bubbles especially at the edge of the jet. The bubbles implode next to the orifice and create strong disturbances which are increased by aerodynamic interactions. Based on these observation a new idea of a break-up model has been developed. Additionally the two-phase flow was used to determine the flow velocity close to the nozzle.


Articles with similar content:

Numerical Investigation of Bubble Dynamics in Acoustic Cavitation Phenomena
Heat Transfer Research, Vol.36, 2005, issue 3
G. K. Ivanitskii
TURBULENCE EFFECT ON THE STABILISATION REGIMES OF NON-PREMIXED FLAMES
TSFP DIGITAL LIBRARY ONLINE, Vol.2, 2001, issue
Isabelle Esquiva-Dano, Dany Escudie
REEVALUATING THE JET BREAKUP REGIME DIAGRAM
Atomization and Sprays, Vol.30, 2020, issue 7
Ben Trettel
X-RAY PHASE CONTRAST IMAGING OF CAVITATION AND DISCHARGED LIQUID JET IN NOZZLES WITH VARIOUS SIZES
Atomization and Sprays, Vol.29, 2019, issue 1
Akira Sou, Yoshitaka Wada, Hideaki Yokohata, Rubby Prasetya, Seoksu Moon, Raditya Hendra Pratama
Droplet dynamics in sprays generated by four different twin-fluid atomizers
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
M. Zaremba, Miroslav Jicha, M. Mlkvik, M. Malý, Jan Jedelsky