Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Imprimir: 2152-5102
ISSN On-line: 2152-5110

Volumes:
Volume 46, 2019 Volume 45, 2018 Volume 44, 2017 Volume 43, 2016 Volume 42, 2015 Volume 41, 2014 Volume 40, 2013 Volume 39, 2012 Volume 38, 2011 Volume 37, 2010 Volume 36, 2009 Volume 35, 2008 Volume 34, 2007 Volume 33, 2006 Volume 32, 2005 Volume 31, 2004 Volume 30, 2003 Volume 29, 2002 Volume 28, 2001 Volume 27, 2000 Volume 26, 1999 Volume 25, 1998 Volume 24, 1997 Volume 23, 1996 Volume 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v25.i1-3.170
pages 202-211

Effect of the Buoyancy Ratio on the Number of Double-Diffusive Cells in a Rectangular Enclosure

Hwataik Han
Department of Mechanics and Design, Kook Min University Seoul, Korea

RESUMO

Double diffusive multi-cells are formed in a rectangular enclosure when horizontal temperature and concentration gradients are present in a certain range of parameters. The system parameters are thermal Grashof number, solutal Grashof number, Prandtl number, and Schmidt number for an enclosure with a given aspect ratio. Depending on the ratio of thermal and solutal Grashof numbers flow patterns due to double diffusive natural convection change, as the number of cells change. The flow structure determines the heat and mass transfer characteristics from the vertical surfaces of the cavity. It is the objective of the present study to investigate the effect of the ratio of thermal and solutal buoyant forces on the number of double diffusive cells formed in a vertical rectangular enclosure. An electrochemical copper deposition system is utilized with the vertical electrode maintained at different temperatures. Temperature distribution is measured using a thermocouple probe along the vertical centerline. The concentration distribution of cupric ion in the enclosure is determined by measuring the attenuation of light through the test cell. In well developed cells, concentration is nearly uniform in each cell, and there are large concentration gradients across the interfaces. The temperature distribution shows a stable stratification in each cell and temperature inversion across the cell interfaces. The interfaces are not quite clear in case the cell does not have appreciable size. The number of cells in a cavity is investigated as a function of the buoyancy ratio.


Articles with similar content:

Time Evolution of Double-Diffusive Convection during Solidification of a Binary System
International Journal of Fluid Mechanics Research, Vol.25, 1998, issue 1-3
H. Miyashita, T. Imoto, Tatsuo Nishimura
EXPERIMENTAL STUDY OF THERMALLY STRATIFIED UNSTEADY FLOW BY NMR-CT
International Heat Transfer Conference 8, Vol.2, 1986, issue
Myung Kyoon Chung, Sang-Joon Lee
THERMALLY INDUCED TRANSPORT PHENOMENA IN PARTIALLY SATURATED POROUS MEDIA
International Heat Transfer Conference 5, Vol.7, 1974, issue
F. K. Deaver, N. R. Moore, H. Wolf
NUMERICAL SIMULATION OF ICE MELTING INSIDE A RECTANGULAR CAVITY WITH ADIABATIC VERTICAL WALLS
International Heat Transfer Conference 11, Vol.10, 1998, issue
P. T. Zubkov, A.V. Gorelikov
NUMERICAL ANALYSIS OF EXPERIMENTAL OBSERVATIONS FOR HEAT TRANSFER AUGMENTATION BY ULTRASONIC VIBRATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Hyun Jung Kim, Ji Hwan Jeong