Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Catalysis in Green Chemistry and Engineering

ISSN Imprimir: 2572-9896
ISSN On-line: 2572-990X

Catalysis in Green Chemistry and Engineering

DOI: 10.1615/CatalGreenChemEng.2019030245
pages 11-24

REVIEW ON CO OXIDATION BY NOBLE AND NON-NOBLE METAL BASED CATALYST

Jyoti Waikar
Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg,Matunga, Mumbai-400019, India
Hari Pawar
Department of Chemistry, Abasaheb Garware College, Karve Road, Pune, India
Pavan More
Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019, India

RESUMO

The abatement of CO by heterogeneous catalysts such as noble and non-noble metal is one of the challenging and interesting routes in environmental catalysis. In this review, the CO oxidation mechanism of noble metal and non-metal based catalyst systems is examined. Oxidation of CO to CO2 by using noble metals (Pt, Pd, Rh, and Au) and non-noble metals (Cu, Co,Mn) has been reviewed carefully regarding their role in support. The CO oxidation by noble metals has shown very high activity. However, a large number of studies have also been devoted to the CO oxidation by non-noble metals, metal oxides, modified binary metal oxides, and the like. Non-noble metals showed CO oxidation activity at lower temperature and were comparable with noble metals. The mechanistic aspects and the role of surface and gaseous oxygen in CO oxidation using transition metals/mixture of metal oxides and Pt, Pd, Rh, and Au have been studied thoroughly.

Referências

  1. Aguila, G., Gracia, F., Araya, P., CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature, Appl. Catal. A, vol. 343, nos. 1-2, pp. 16-24,2008.

  2. Al-Harbi, M., Hayes, R., Votsmeier, M., and Epling, W.S., Competitive NO, CO and Hydrocarbon Oxidation Reactions over a Diesel Oxidation Catalyst, Can. J. Chem. Eng., vol. 90, no. 6, pp. 1527-1538,2012.

  3. Arabatzis, I.M., Stergiopoulos, T., Andreeva, D., Kitova, S., Neophytides, S.G., and Falaras, P., Characterization and Photocatalytic Activity of Au/TiO2 Thin Films for Azo-Dye Degradation, J. Catal, vol. 220, no. 1, pp. 127-135,2003.

  4. Baxter, R.J. andHu, P., Insight into Why the Langmuir-Hinshelwood Mechanism is Generally Preferred, J. Chem. Phys, vol. 116, no. 11, pp. 4379-4381,2002.

  5. Bera, P., Gayen, A., Hegde, M.S., Lalla, N.P., Spadaro, L., Frusteri, F., and Arena, F., Promoting Effect of CeO2 in Combustion Synthesized Pt/CeO2 Catalyst for CO Oxidation, J. Phys. Chem. B, vol. 107, no. 25, pp. 6122-6130,2003.

  6. Bera, P., Patil, K.C., Jayaram, V., Subbanna, G.N., and Hegde, M.S., Ionic Dispersion of Pt and Pd on CeO2 by Combustion Method: Effect of Metal-Ceria Interaction on Catalytic Activities for NO Reduction and CO and Hydrocarbon Oxidation, J. Catal., vol. 196, no. 2, pp. 293-301,2000.

  7. Bi, Y. andLu, G., Catalytic CO Oxidation over Palladium Supported NaZSM-5 Catalysts. Appl. Catal., B, vol. 41, no. 3, pp. 279-286, 2003.

  8. Boreskov, G.K., The Catalysis of Isotopic Exchange in Molecular Oxygen, Adv. Catal., vol. 15, pp. 285-339,1965.

  9. Bruckner, A., In Situ Electron Paramagnetic Resonance: A Unique Tool for Analyzing Structure-Reactivity Relationships in Heterogeneous Catalysis, Chem. Soc. Rev., vol. 39, no. 12, pp. 4673-4684,2010.

  10. Cao, J.-L., Wang, Y., Yu, X.-L., Wang, S.-R., Wu, S.-H., and Yuan, Z.-Y., Mesoporous CuO-Fe2O3 Composite Catalysts for Low-Temperature Carbon Monoxide Oxidation, Appl. Catal, B, vol. 79, no. 1, pp. 26-34,2008.

  11. Cheekatamarla, P.K., Epling, W.S., and Lane, A.M., Selective Low-Temperature Removal of Carbon Monoxide from Hydrogen-Rich Fuels over Cu-Ce-Al Catalyst, J. Power Sources, vol. 147,nos. 1-2, pp. 178-183,2005.

  12. Chen, Y.J., Wu, D.-E., and Yeh, C.-T., Oxidation of Carbon Monoxide over Nanoparticles of Cobalt Oxide, Rev. Adv. Mater. Sci., vol. 5, no. 1, pp. 41-46,2003.

  13. Chon, H. and Prater, C.D.,Hall Effect Studies of Carbon Monoxide Oxidation over Doped Zinc Oxide Catalysts, Discuss. Faraday Soc., vol. 41, pp. 380-393,1996.

  14. Craciun, R., Nentwick, B., Hadjiivanov, K., and Knozinger, H., Structure and Redox Properties of MnOx/Yttrium-Stabilized Zirconia (YSZ) Catalyst and Its Use in CO and CH4 Oxidation, Appl. Catal., A, vol. 243, no. 1, pp. 67-79,2003.

  15. Daniell, W., Lloyd, N.C., Bailey, C., and Harrison, P.G., Copper-Cerium Oxide Catalysts for CO Oxidation: An EXAFS and XRD Study, J. Phys. IVFrance, vol. 7, pp. 963-964,1997.

  16. Deng, W., De Jesus, J., and Saltsburg, H., and Flytzani-Stephanopoulos, M., Low-Content Gold-Ceria Catalysts for the Water-Gas Shift and Preferential CO Oxidation Reactions, Appl. Catal., A, vol. 291, nos. 1-2, pp. 126-135,2005.

  17. Elias, J.S., Artrith, N., Bugnet, M., Giordano, L., Botton, G.A., Kolpak, A.M., and Shao-Horn, Y., Elucidating the Nature of the Active Phase in Copper/Ceria Catalysts for CO Oxidation, ACS Catal, vol. 6, no. 3, pp. 1675-1679,2016.

  18. Epling, W.S., Cheekatamarla, P.K., and Lane, A.M., Reaction and Surface Characterization Studies of Titania-Supported Co, Pt, and Co/Pt Catalysts for the Selective Oxidation of CO in H2-Containing Streams, Chem. Eng. J., vol. 93, no. 1,pp. 61-68,2003.

  19. Eren, B., Heine, C., Bluhm, H., Somorjai, G.A., and Salmeron, M., Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and near Edge X-ray Adsorption Fine Structure Spectroscopy, J.Am. Chem. Soc., vol. 137, no. 34, pp. 11186-11190,2015.

  20. Fernandez-Garcila, M., Martiinez-Arias, A., Salamanca, L.N., Coronado, J.M., Anderson, J.A., Conesa, J.C., and Soria, J., Influ-ence of Ceria on Pd Activity for the CO+O2 Reaction, J. Catal., vol. 187, no. 2, pp. 474-485,1999.

  21. Finocchio, E., Busca, G., Lorenzelli, V., and Escribano, V.S., FTIR Studies on the Selective Oxidation and Combustion of Light Hydrocarbons at Metal Oxide Surfaces. Part 2.-Propane and Propene Oxidation on Co3O4, J. Chem. Soc., Faraday Trans, vol. 92, no. 9, pp. 1587-1593,1996.

  22. Gamboa-Rosales, N.K., Ayastuy, J.L., Boukha, Z., Bion, N., Duprez, D., Perez-Omil, J.A., Rio, E., and Gutierrez-Ortiz, M.A., Ceria-Supported Au-CuO and Au-Co3O4 Catalysts for CO Oxidation: An 18O/16O Isotopic Exchange Study, Appl. Catal, B, vols. 168-169, pp. 87-97,2015.

  23. Gao, J., Jia, C., Zhang, L., Wang, H., Yang, Y., Hung, S.F., Hsu, Y.Y., and Liu, B., Tuning Chemical Bonding of MnO2 through Transition-Metal Doping for Enhanced CO Oxidation, J. Catal., vol. 341, pp. 82-90,2016.

  24. George, K. and Sugunan, S., Catalytic Oxidation of Cyclohexane over Cu-Zn-Cr Ternary Spinel System, React. Kinet. Catal. Lett., vol. 94, no. 2, pp. 252-260,2008.

  25. Grass, M.E., Zhang, Y., Butcher, D.R., Park, J.Y., Li, Y., Bluhm, H., Bratlie, K.M., Zhang, T., and Somorjai, G.A., A Reactive Oxide Overlayer on Rhodium Nanoparticles during CO Oxidation and Its Size Dependence Studied by In Situ Ambient-Pressure X-Ray Photoelectron Spectroscopy, Angew. Chem, Int. Ed., vol. 47, no. 46, pp. 8893-8896,2008.

  26. Green, I.X., Tang, W., Neurock, M., and Yates, J.T., Spectroscopic Observation of Dual Catalytic Sites during Oxidation of CO on a Au/TiO2 Catalyst, Science, vol. 333, no. 6043, pp. 736-739,2011.

  27. Haruta, M., Yamada, N., Kobayashi, T., and Iijima, S., Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide, J. Catal, vol. 115, no. 2, pp. 301-309,1989.

  28. Hattori, M., Haneda, M., and Ozawa, M., Influence of Ce/Zr Ratio on CO Oxidation Activity of Ceria-Zirconia Supported Cu Catalyst, Jpn. J. Appl. Phys, vol. 55, no. 1S, p. 01AE05,2015.

  29. Hinokuma, S., Yamashita, N., Katsuhara, Y., Kogami, H., and Machida, M., CO Oxidation Activity of Thermally Stable Fe-Cu/CeO2 Catalysts Prepared by Dual-Mode Arc-Plasma Process, Catal. Sci. Technol., vol. 5,no. 8, pp. 3945-3952,2015.

  30. Huang, T.J. and Tsai, D.H., CO Oxidation Behavior of Copper and Copper Oxides, Catal. Lett., vol. 87, pp. 173-178,2003.

  31. Ivanova, N.D., Boldyrev, E.I., Ivanov, S.V., Sokol'skii, G.V., and Makeeva, I.S., Comparative Characteristics of Chemical Power Cells based on MnO2-Zn Systems with Various Manganese Dioxide Samples, Russ. J. Appl. Chem, vol. 75, no. 6, 2002, pp. 935-938,2002.

  32. Janssens, T.V.W., Carlsson, A., Puig-Molina, A., and Clausen, B.S., Relation between Nanoscale Au Particle Structure and Activity for CO Oxidation on Supported Gold Catalysts, J. Catal, vol. 240, no. 2, pp. 108-113,2006.

  33. Kaneti, Y. V. , Tanaka, S . , Jikihara, Y. , Nakayama, T. , Bando, Y. , Haruta, M . , Hossain, M . S . A . , Golberg, D . , and Yamauchi, Y. , Room Temperature Carbon Monoxide Oxidation based on Two-Dimensional Gold-Loaded Mesoporous Iron Oxide Nanoflakes, Chem. Commun., vol. 54, no. 61, pp. 8514-8517,2018.

  34. Kanungo, S., Physicochemical Properties of MnO2 and MnO2-CuO and Their Relationship with the Catalytic Activity for H2O2 Decomposition and CO Oxidation, J. Catal., vol. 58, no. 3, pp. 419-435,1979.

  35. Kiss, J.T. and Gonzalez, R.D., Catalytic Oxidation of Carbon Monoxide over CoO, J. Phys. Chem., vol. 88, no. 14, pp. 892-897, 1984.

  36. Klier, K. and Kuchynka, K., Carbon Monoxide Oxidation and Adsorbate-Gas Exchange Reactions on MnO2-based Catalysts, J. Catal, vol. 6, no. 1, pp. 62-71,1966.

  37. Knozinger, H., Heterogeneous Catalysis and Solid Catalysts, in Ullmann's Encyclopedia of Industrial Chemistry, Berlin, Germany: Wiley-VCH Verlag GmbH, 2002.

  38. Kochubey, D.I., Pavlova, S.N., Novgorodov, B.N., Kryukova, G.N., and Sadykov, V.A., The Influence of Support on the Low-Temperature Activity of Pd in the Reaction of CO Oxidation, J. Catal, vol. 161, no. 2, pp. 500-506,1996.

  39. Konova, P., Stoyanova, M., Naydenov, A., Christoskova, S., and Mehandjiev, D., Catalytic Oxidation of VOCs and CO by Ozone over Alumina Supported Cobalt Oxide, Appl. Catal. A, vol. 298, nos. 1-2, pp. 109-114,2006.

  40. Kucharczyk, B., Oxidation of Carbon Oxide over Monolithic Platinum Catalysts Doped with Metal Oxides, Environ. Prot. Eng., vol. 34, pp. 70-74,2008.

  41. Kumar, G.M., Sampath, S., Jeena, V.S., and Anjali, R., Carbon Monoxide Pollution Levels at Environmentally Different Sites, J. Ind. Geophys. Union, vol. 12, no. 9, pp. 31-40,2008.

  42. Kung, H.H., Kung, M.C., and Costello, C.K., Supported Au Catalysts for Low Temperature CO Oxidation, J. Catal, vol. 216, nos. 1-2, pp. 425-432,2003.

  43. Lee, Y., He, G., Akey, A.J., Si, R., Flytzani-Stephanopoulos,M., and Herman, I.P., Raman Analysis of Mode Softening in NanoparticleCeO, J.Am. Chem. Soc, vol. 133, pp. 12952-12955,2011.

  44. Li, W.B., Wang, J.X., and Gong, H., Catalytic Combustion of VOCs on Non-Noble Metal Catalysts, Catal. Today, vol. 148, pp. 81-87,2009.

  45. Liang, S., Teng, F., Bulgan, G., Zong, R., and Zhu, Y., Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation, J. Phys. Chem. C, vol. 112, no. 14, pp. 5307-5315,2008.

  46. Ligthart, D.A.J.M., van Santen, R.A., and Hensen, E.J.M., Supported Rhodium Oxide Nanoparticles as Highly Active CO Oxidation Catalysts, Angew. Chem., Int. Ed., vol. 50, no. 23, pp. 5306-5310,2011.

  47. Liu, H.H., Wang, Y., Jia, A.P., Wang, S.Y., Luo, M.F., and Lu, J.Q., Oxygen Vacancy Promoted CO Oxidation over Pt/CeO2 Catalysts: A Reaction at Pt-CeO2 Interface, Appl. Surf. Sci., vol. 314, pp. 725-734,2014.

  48. Margitfalvi, J.L., Borbath, I., Hegedus, M., Tfirst, E., Gobolos, S., and Lazar, K., Low-Temperature CO Oxidation over New Types of Sn-Pt/SiO2 Catalysts, J. Catal, vol. 196, no. 1, pp. 200-204,2000.

  49. Martiinez-Arias, A., Fernandez-Garcila, M., Galvez, O., Coronado, J.M., Anderson, J.A., Conesa, J.C., Soria, J., andMunuera, G., Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts, J. Catal, vol. 195, no. 1, pp. 207-216,2000.

  50. Mizuno, N., Tanaka, M., and Misono, M., Reaction between Carbon Monoxide and Nitrogen Monoxide over Perovskite-Type Mixed Oxides, J. Chem. Soc., Faraday Trans, vol. 88, pp. 91-95,1992.

  51. Moreno, M., Bergamini, L., Baronetti, G.T., Laborde, M.A., and Marino, F.J., Mechanism of CO Oxidation over CuO/CeO2 Catalysts, Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5918-5924,2010.

  52. Oh, S. and Sinkevitch, R., Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feed Streams by Selective Catalytic Oxidation, J. Catal, vol. 142, no. 1, pp. 254-262,1993.

  53. Omata, K., Kobayashi, Y., and Yamada, M., Artificial Neural Network-Aided Development of Supported Co Catalyst for Preferential Oxidation of CO in Excess Hydrogen, Catal. Commun, vol. 6, no. 8, pp. 563-567,2005.

  54. Oran, U. and Uner, D., Mechanisms of CO Oxidation Reaction and Effect of Chlorine Ions on the CO Oxidation Reaction over Pt/CeO2 and Pt/CeO2/y-Al2O3 Catalysts, Appl. Catal., B, vol. 54, pp. 183-191,2004.

  55. Pavlova, S.N., Sadykov, V.A., Bulgakov, N.N., and Bredikhin, M.N., The Influence of Support on the Low-Temperature Activity of Pd in the Reaction of CO Oxidation, J. Catal, vol. 161, no. 2, pp. 517-523,1996.

  56. Qin, H., Qian, X., Meng, T., Lin, Y., and Ma, Z., Pt/MO*/SiO2, Pt/MO*/TiO2, and Pt/MO*/Al2O3 Catalysts for CO Oxidation, Catalysts, vol. 5, no. 2, pp. 606-633,2015.

  57. Qi, L., Yu, Q., Dai, Tang, C., Liu, L., Zhang, H., Gao, F., Dong, L., and Chen, Y., Influence of Cerium Precursors on the Structure and Reducibility of Mesoporous CuO CeO2 Catalysts for CO Oxidation, Appl. Catal, B, vols. 119-120, pp. 308-320,2012.

  58. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F., Re-Investigating the CO Oxidation Mechanism over Unsup-ported MnO,Mn2O3, and MnO2 Catalysts, Catal. Today, vol. 131,nos.1-4,pp. 477-482,2008.

  59. Rossignol, C., Arrii, S., Morfin, F., Poccolo, L., Caps, V., and Rousset, J., Selective Oxidation of CO over Model Gold-based Catalysts in the Presence of H2, J. Catal., vol. 230, no. 2, pp. 476-483,2005.

  60. Royer, S. and Duprez, D., Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides, ChemCatChem, vol. 3, no. 1, pp. 24-65,2011.

  61. Rynkowski, J.M. and Dobrosz-Gomez I., Ceria-Zirconia Supported Gold Catalysts, Ann. Univ. Mariae Curie-Sklodowska, Sect. AA, vol. 14, pp. 197-217,2009.

  62. Schubert, M.M., Plzak, V., Garche, J., and Behm, R.J., Activity, Selectivity, and Long-Term Stability of Different Metal Oxide Supported Gold Catalysts for the Preferential CO Oxidation in H2-Rich Gas, Catal. Lett., vol. 76, nos. 3-4, pp. 143-150,2001.

  63. Sharma, R.C. and Sharma, N., Environmental Impact of Automobiles in India, J. Basic Appl. Eng. Res, vol. 2, no. 1, pp. 46-49, 2014.

  64. Sie, M.-C., Jeng, P.-D., Chen, P.-H., Wu, R.-C., and Wang, C.-B., Evaluation of CO Oxidation over Co3O4-SupportedNiO Cata-lysts, AIP Conf. Proc., vol. 1877, p. 070004,2017.

  65. Slavinskaya, E . M. , Gulyaev, R. V. , Zadesenets, A . V. , Stonkus, O .A . , Zaikovskii, V. I . , Shubin, Y. V. , Korenev, S . V. , and Boronin, A.I., Low-Temperature CO Oxidation by Pd/CeO2 Catalysts Synthesized using the Coprecipitation Method, Appl. Catal., B, vols. 166-167, pp. 91-103,2015.

  66. Stobbe, E.R., deBoer, B.A., andGeus, J.W., The Reduction and Oxidation Behaviour of Manganese Oxides, Catal. Today, vol. 47, nos. 1-4, pp. 161-167,1999.

  67. Teschner, D., Wootsch, A., Pozdnyakova, O., Sauer, H., Knop-Gericke, A., and Schlogl, R., Surface and Structural Properties of Pt/CeO2 Catalyst under Preferential CO Oxidation in Hydrogen (PROX), React. Kinet. Catal. Lett., vol. 87, no. 2, pp. 235-247, 2006.

  68. Thormahlen, P., Skoglundh, M., Fridell, E., and Andersson, B., Low-Temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts, J. Catal, vol. 188, no. 2, pp. 300-310,1999.

  69. Wan, H., Li, D., Dai, Y., Hu, Y., Zhang, Y., Liu, L., Zhao, B., Liu, B., Sun, K., Dong, L., and Chen, Y., Effect of CO Pretreatment on the Performance of CuO/CeO2/y-Al2O3 Catalysts in CO+O2 Reactions, Appl. Catal., A, vol. 360, no. 1, pp. 26-32,2009.

  70. Wang, X., Huang, K., Yuan, L., Xi, S., Yan, W., Geng, Z., and Feng, S., Activation of Surface Oxygen Sites in a Cobalt-based Perovskite Model Catalyst for CO Oxidation, J. Phys. Chem. Lett., vol. 9, no. 15, pp. 4146-4154,2018.

  71. White, B.E., Chemistry and Catalysis at the Surface of Nanomaterials, PhD, Graduate School of Arts and Sciences, Columbia University, New York, 2007.

  72. Xie, Y., Dong, F., Heinbuch, S., Rocca, J.J., and Bernstein, E.R., Oxidation Reactions on Neutral Cobalt Oxide Clusters: Experi-mental and Theoretical Studies, Phys. Chem. Chem. Phys., vol. 12, no. 4, pp. 947-959,2010.

  73. Yakimova, M.S., Ivanov, V.K., Polezhaeva, O.S., Trushin, A.A., Lermontov, A.S., and Tretyakov, Y.D., Oxidation of CO on Nanocrystalline Ceria Promoted by Transition Metal Oxides, Doklady Chem., vol. 427, no. 2, pp. 186-189,2009.

  74. Yan, J., Ma, J., Cao, P., and Li, P., Preferential Oxidation of CO in H2-Rich Gases over Co-Promoted Pt-Co-Al2O3 Catalyst, Catal. Lett., vol. 93, nos. 1-2, pp. 55-60,2004.

  75. Yao, Y., The Oxidation of Hydrocarbons and CO over Metal Oxides: III. Co3O4, J. Catal, vol. 33, no. 1, pp. 108-122,1974.

  76. Yoshida, H., Yamashita, N., Ijichi, S., Okabe, Y.,Misumi, S.,Hinokuma, S., andMachida, M., A Thermally Stable Cr-CuNanos- tructure Embedded in the CeO2 Surface as a Substitute for Platinum-Group Metal Catalysts, ACS Catal., vol. 5,no. 11,pp. 6738-6747,2015.

  77. Yoshida, T., Murayama, T., Sakaguchi, N., Okumura, M., Ishida, T., and Haruta, M., Carbon Monoxide Oxidation by Polyoxometalate-Supported Gold Nanoparticulate Catalysts: Activity, Stability, and Temperature-Dependent Activation Properties, Angew. Chem., Int. Ed., vol. 57, no. 6, pp. 1523-1527,2018.

  78. Yung, M.M., Holmgreen, E.M., and Ozkan, U.S., Low-Temperature Oxidation of Carbon Monoxide on Co/ZrO2, Catal. Lett., vol. 118, nos. 3-4, pp. 180-186,2007.

  79. Zhao, Z., Yung, M.M., and Ozkan, U.S., Effect of Support on the Preferential Oxidation of CO over Cobalt Catalysts, Catal. Commun, vol. 9, no. 6, pp. 1465-1471,2008.

  80. Zou, H., Chen, S., Liu, Z., and Lin, W., Selective CO Oxidation over CuO-CeO2 Catalysts Doped with Transition Metal Oxides, Powder Technol., vol. 207, nos. 1-3, pp. 238-244,2011.


Articles with similar content:

MONOMETALLIC AND BIMETALLIC PT-BASED NANOPARTICLES AS TETRAMETHYLTETRAZENE (TMTZ) DECOMPOSITION CATALYSTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.17, 2018, issue 3
Nolwenn Mayet, Romain Beauchet, Kamal Farhat, Yann Batonneau, Charles J. Kappenstein
High temperature electrodeposition of ZnSe
Advances in Molten Salts, Vol.0, 1998, issue
Gerard S. Picard, Maria Reyes Bermejo Fradejas, S. Sanchez, Pierre Cowache, David Lambertin, Yollanda Castrillejo
Reactivity in molten oxonitrates of lanthanum and magnanese salts. Synthesis of La1-x MnO3
Advances in Molten Salts, Vol.0, 1998, issue
P. Marote, C. Ciaravino, J. P. Deloume, R. Lyonnet, J.P. Scharff, B. Durand
HIGH TEMPERATURE ELECTRODEPOSITION OF ZnSe
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.3, 1999, issue 1
Sylvie Sanchez
CHARACTERISATION OF A NEW GOLD CATALYST SUPPORTED ON MIXED OXIDES FOR PURE HYDROGEN PRODUCTION AND PURIFICATION
HYSYDAYS
1st World Congress of Young Scientists on Hydrogen Energy Systems, Vol.0, 2005, issue
Flora Boccuzzi, Maela Manzoli, Anna Chiorino, Floriana Vindigni