Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal on Algae
SJR: 0.216 SNIP: 0.322 CiteScore™: 0.4

ISSN Imprimir: 1521-9429
ISSN On-line: 1940-4328

International Journal on Algae

DOI: 10.1615/InterJAlgae.v22.i2.80
pages 191-199

Biochemical Composition of Cyanobacterium Calothrix marchica and Perspectives its Using in Biotechnology

A. Trofim
Moldova State University, Research and Innovation Institute, SRL Phycobiotechnology, 60 A. Mateevici Str., Chisinau 2009, Republic of Moldova
V. Bulimaga
Moldova State University, Research and Innovation Institute, SRL Phycobiotechnology, 60 A. Mateevici Str., Chisinau 2009, Republic of Moldova
M. B. Bulimaga
Moldova State University, Research and Innovation Institute, SRL Phycobiotechnology, 60 A. Mateevici Str., Chisinau 2009, Republic of Moldova

RESUMO

In recent years, cyanobacteria have been found to be important sources of known bioactive substances, as well as newly discovered secondary metabolites. This research isolated and characterized one of the strains - Calothrix marchica Lemmermann CNMN-CB-18 - in pure culture. This strain grows in the soil of the Cogalnic River meadow, Cimislia, Moldova. The morphological characteristic of C. marchica revealed solitary blue-green trichomes. The vegetative cells are of different ranging, from square to rectangular with a width (4.0-7.0 μm) 2-4 times the length. Basal cells have a width of 4.5-6.0 μm. The terminal cell is round or slightly sharp. Each trichome contains a basic spherical or hemispherical basal heterocyst with a length of 2.0-5.5 μm and a width of 3.0-5.5 μm. The two step cultivation of C. marchica, with switching of the illumination from 1500 to 2500 lx on the 7th day, lead to a higher carbohydrate content (up to 40.5%) on BG11 medium; when compared to its growth in different lighting regimes (36.5-37.5%). The productivity of the strain showed similar tendencies: it reached values of up to 1.314 g/L for the two-step cultivation, whereas the 1500 and 2500 lx continuous illumination displayed lower values -0.714 and 0.87 g/L, respectively. The same trends were found with growth on Drew medium, however its poorer content of minerals lead to lower yields, as compared to BG11. The biochemical analysis of C. marchica grown on Drew medium demonstrates rich amounts of lipids - 33.7%, and carbohydrates - 32.9%, followed by proteins at 14.66%. Due to its ability to adjust to various growth conditions under controlled cultivation and accumulate high amounts of carbohydrates, this strain is a valuable source of bioactive substances for use in biotechnology in order to be applied in diverse fields such as: cosmetics, pharmaceuticals, agriculture, etc.

Referências

  1. Abbasi B., Shokravi Sh., Golsefidi M.Ah., Sateiee A., Kiaei E., Effects of alkalinity, extremely low carbon dioxide concentration and irradiance on spectral properties, phycobilisome, photosynthesis, photosystems and functional groups of the native cyanobacterium Calothrix sp. ISC 65, Algologia, 29(1): 40-58,2019, https://doi.org/10.15407/alg29.01.040.

  2. Abed R., Dobretsov S., Sudesh K., Applications of cyanobacteria in biotechnology, J. Appl. Microbiol., 106: 1-12,2009. Algae: Referance book., Ed. S.P. Wasser. Kiev: Naukova Dumka, 608 p., 1989. [Rus.].

  3. Bulimaga V., Zosim L., Trofim A., Pisova M., Procedures of obtaining of exopolysaccharides produced by cyanobacteria Spirulina platensis and Nostoc linckia, Analele Univ. din Oradea, Fascicula Biol., 25: 7-13,2018.

  4. Filipovich I., Egorova T., Sevastianova L., Workshop on General Biochemistry, Moscow: Prosveshcheniye, 318 p., 1975. [Rus.].

  5. Gutierrez M., Suyama T., Engene N., Wingerd J., Matainaho L., Gerwick W., Apratoxin D, a potent cytotoxic cyclodepsipeptide from papua new guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida, J. Nat. Prod, 71(6): 1099-1103, 2008.

  6. Guiry M.D., Guiry G.M., AlgaeBase, World-wide electronic publication. Nat. Univ. Ireland, Galway, 2020.

  7. Hockelmann C., Becher P.G., von ReuB S.H., Juttner F., Sesquiterpenes of the geosmin-producing Cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates, Z. Naturforsch, 64(1-2): 49-55,2009.

  8. Khalifa K.S., Hamouda R.A., Hamza H.A. 2016. Antitumor activity of silver nanoparticles biosynthesized by microalgae, J. Chem. andPharm. Res., 8(3): 1-6, 2016.

  9. Lee M.C., Chen Y.C., Peng T.C., Two-stage culture method for optimized polysaccharide production in Spirulina platensis, J. Sci. Food and Agricult., 92(7): 1562-1569, 2012.

  10. Malathi T., Ramesh Babu M., Mounika T., Digamber Rao B., Antimicrobial activity of blue-green algae Calothrix braunii (A.Br.) Bornet et Flahault, Int. J. Innovat. Sci., Engineer. and Technol., 2(8): 104-112,2015.

  11. Park J., Jeong H.J., Yoon E.Y., Moon S.J., Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method, Algae, 31(4): 391-401, 2016.

  12. Pattanaik B., Lindberg P., Terpenoids and their biosynthesis in cyanobacteria, Life, 5(1): 269-293, 2015.

  13. Paul A., Rout J., Biochemical evaluation of some cyanobacterial strains isolated from the lime sludge waste of a Paper Mill in Southern Assam (India), Phykos, 47(1): 8-15, 2017.

  14. Ruangsomboon S., Chidthaisong A., Bunnag B., Inthorn D., Harvey N.W.,Lead (Pb2+) adsorption characteristics and sugar composition of capsular polysaccharides of cyanobacterium Calothrix marchica, Songklan. J. Sci. Technol., 29: 529-541, 2007.

  15. Salaru V., Melnic V., Particularitatile structurii taxonomice si ale ecobiomorfelor algelor edafice din vegetatia de stepa dupa o perioada de pastrare indelungata in stare de anhidrobioza, Stud. Univ. Mold, 1(51): 5-8, 2012.

  16. Sharma V., Manchanda H., Effect of salinity and lipid content of cynobacterium Calothrix marchica. J. Biol. Chem. Res, 35(2): 1009-1014, 2018.

  17. Sundaramanickam A., Palanivel S., Shekhar S., Kumaresan S., Balasubramanian T., In vitro evaluation of antimicrobial activity of some selected cyanobacterial extracts against human pathogens, Int. J. Adv. Pharm., Biol. and Chem., 4(1): 36-43,2015.

  18. Tiwari O.N., Singh B.V., Mishra U., Singh A.K., Dhar D.W., Singh P.K., Distribution and physiological characterization of cyanobacteria isolated from arid zones of Rajasthan, Trop. Ecol, 46(2): 165-171,2005.

  19. Tiwari O.N., Indrama T., Singh K.O., Singh O.A., Oinam G., Koijam L., Subhalaxmi A., Thadoi A., IndiraW., Silvia C., Khangembam R., Shamjetshabam M., Premi P., Bidyababy T., Sarabati K., Sharma G.D., Enumeration, pigment analysis and nitrogenase activity of cyanobacteria isolated from unexplored rice fields of Manipur, India falling under Indo-Burma biodiversity hotspots, Int. J. Curr. Microbiol. andAppl. Sci, 4(6): 666-680, 2015.

  20. Trofim A., Salaru V., Zosim L., In: 3rdInternational scientific conference on microbial biotechnology (Chisinau, 12-13 Oct., 2016), Chisinau, pp. 159-160, 2016.

  21. Tuo S.-H., Lee Chen Y.-L., Chen H.-Y., Chen T.-Y., Free-living heterocystous cyanobacteria in the tropical marginal seas of the western North Pacific, J. Plankton Res., 39(3): 404-422, 2017.

  22. Vijayakumar S., Menakha M., Pharmaceutical applications of cyanobacteria - A review, J. Acute Med, 5(1): 15-23, 2015.

  23. Vinogradova O.M. Wasser S.P. Nevo E., In: Biodiversity of cyanoprocaryotes, algae and fungi of Israel, Cyanoprocaryotes and algae of continental Israel, Ruggell: ARA Gantner Verlag K.-G.,pp. 132-141,2000.

  24. Zarei Darki B., Cyanoprokaryota of different types of water bodies of Iran, Algologia, 20(4): 482-491,2010, http://algologia.co.Ua/pdf/20/4/alg-2010-20-4-482.pdf.


Articles with similar content:

Productivity and Nutritional Content of Culinary-Medicinal Oyster Mushroom Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. (Agaricomycetideae) Fruit Bodies Cultivated on Substrates Containing Solid Waste from Anaerobic Digested Poultry Litter
International Journal of Medicinal Mushrooms, Vol.11, 2009, issue 2
Nona A. Mikiashvili, Omoanghe S. Isikhuemhen
Investigations at the Ukrainian Culture Collection of Edible and Medicinal Mushrooms
International Journal of Medicinal Mushrooms, Vol.4, 2002, issue 3
Asja S. Buchalo, Nadezda Yu. Mitropolskaya
Use of Agro-Industrial Waste for Production of Laccase and Manganese Peroxidase from White-Rot Basidiomycetes
International Journal of Medicinal Mushrooms, Vol.7, 2005, issue 3
Yitzhak Hadar, Moti Rebhun
Physiological and Genetic Variability of Commercial Isolates of Culinary-Medicinal Mushroom Agaricus brasiliensis S. Wasser et al. (Agaricomycetideae) Cultivated in Brazil
International Journal of Medicinal Mushrooms, Vol.7, 2005, issue 4
Carla M. Camelini, Liz C. C. Ribas, Maria A. Neves, Margarida. M. de Mendonca, Clarice L. Leite, Maria C. M. Kasuya, Elza F. Araujo
Effect of Environmental Conditions on Synnema Formation and Nucleoside Production in Cicada Flower, Isaria cicadae (Ascomycetes)
International Journal of Medicinal Mushrooms, Vol.21, 2019, issue 1
Fen Wang, Guijun Liu, Kuanbo Liu, Caihong Dong