Inscrição na biblioteca: Guest
International Journal on Algae

Publicou 4 edições por ano

ISSN Imprimir: 1521-9429

ISSN On-line: 1940-4328

SJR: 0.168 SNIP: 0.377 CiteScore™:: 0.6 H-Index: 11

Indexed in

The Content of Pigments and Photosynthetic Activity of Chlorella vulgaris Beij. (Chlorophyta) When Exposed to Sodium Selenite, Zinc Sulphate, and Chromium Chloride

Volume 21, Edição 4, 2019, pp. 335-348
DOI: 10.1615/InterJAlgae.v21.i4.40
Get accessGet access

RESUMO

The content of photosynthetic pigments, their ratio and primary photosynthesis processes in Chlorella vulgaris were investigated by the combined and separate action of salts of trace elements Selenium (sodium selenite), Zinc (zinc sulfate) and Chromium (chromium chloride). The tendency to increase the total content of chlorophylls a and b and carotenoids with all options for the impact of trace elements were revealed. The combined action of Selenium and Zinc demonstrated the most noticeable effect. At the same time, the chlorophyll a/b ratio decreased as a result of the increase in the chlorophyll b content. As the chlorophyll fluorescence induction parameters changed, the level of non-photochemical chlorophyll quenching (NPQt) in the joint action of the salts of Selenium and Chromium increased. However, an increase in the relative content of chlorophyll and a slight change in the probable rate of loss of of linear electron flow (LEF) in the action of the studied salts reveal the functioning of mechanisms to ensure the stability of the photosynthetic apparatus in C. vulgaris and prevent its inactivation.

Referências
  1. Bodnar O.I., Burega N.V., Palchyk A.O., Viniarska H.B., and Grubinko V.V., Optimization of Chlorella vulgaris Beij. cultivation in a bioreactor of continuous action, Biotechnol. Acta, 9(4): 42-49, 2016.

  2. The Content of Pigments and Photosynthetic Activity Bodnar O.I., Kovalska H.B., and Grubinko V.V., Regulation of biosynthesis of lipids in Chlorella vulgaris by compounds of zinc, chromium and selenium, Regulat. Mechanisms in Biosyst., 9(2): 267-274, 2018.

  3. Chiba M. and Kikuchi M., The in vitro effects of zinc and manganese on delta-aminolevulinic acid dehydratase activity inhibited by lead or tin, Toxicol. Appl. Pharmacol., 73(3): 388-394, 1984.

  4. Doucha J., Livansky K., Kotrbacek V., and Zachleder V., Production of Chlorella biomass enriched by selenium and its use in animal nutrition: A review, Appl. Microbiol. Biotechnol., 83(6): 1001-1008, 2009.

  5. Einicker-Lamas M., Mezian G.A., Fernandes T.B., Silva F.L., Guerra F., Miranda K., Attias M., and Oliveira M.M., Euglena gracilis as a model for study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells, Environ. Pollut., 120(3): 779-786, 2002.

  6. Fomishyna R.M., Syvash O.O., Zakharova T.O., and Zolotareva O.K., The role of chlorophyllase in the adaptation of plants to lighting conditions, Ukr. Bot. J, 66(1): 94-102, 2009.

  7. Genty B., Briantais J.-M., and Baker R.N., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, Gen. Subj., 990(1): 87-92, 1989.

  8. Goltsev V.N., Kaladzhi Kh.M., Paunov M., Baba V., Khorachek T., Moiski J., Kocel H., and Allahverdiev S., Using variable chlorophyll fluorescence to assess the physiological state of the photosynthetic apparatus of plants, Rus. J. Plant Physiol, 63(6): 881-907, 2016.

  9. Horcsik Z.T., Kovacs L., Laposi R., Meszaros I., Lakatos G, and Garab G., Effect of chromium on photosystem 2 in the unicellular green alga, Chlorella pyrenoidosa, Photosynthetica, 45(1): 65-69, 2007.

  10. Jolliffe I.T., Principal Component Analysis, Springer-Verlag, New York, 2002.

  11. Kov^fc J., Babula P., Hedbavny J., Krystofova O., and Provaznik I., Physiology and methodology of chromium toxicity using alga Scenedesmus quadricauda as model object, Chemosphere, 120: 23-30, 2015.

  12. Kramer D., Johnson G, Kiirats O., and Edwards GE., New fluorescence parameters for the determination of QA redox state and excitation energy fluxes, Photosynthesis Res, 79(2): 209-218, 2004.

  13. Kuhlgert S., Austic G, Zegarac R., Osei-Bonsu I., Hoh D., Chilvers M.I., Roth M.G, Bi K., TerAvest D., Weebadde P., and Kramer D.M., Multispe Q Beta: a tool for large-scale plant phenotyping connected to the open Photosyn Q network, Roy. Soc. Open Sci., 3(10): 160-592, 2016.

  14. Kumar K.S., Dahms H.U., Lee J.S., Kim H.C., Lee W.C., and Shin K-H., Algal photosynthetic response to toxic metals and herbicides assessed by chlorophyll a fluorescence, Ecotoxicol. Environ. Saf., 104: 51-71, 2014.

  15. Kupper H., Setlik I., Spiller M., Frithjof C., Kupper F.C., and Prasil O., Heavy metal induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation, J. Phycol., 38: 429-441, 2002.

  16. Lu F., Gang D., Liu W., Zhan D., Wu H., Guo W. Comparative study of responses in the brown algae Sargassum thunbergii to zinc and cadmium stress, Chin. J. Oceanol. Limnol, 36(3): 933-941, 2018.

  17. Lukashiv O.Ya., Bodnar O.I., and Grubinko V.V., Accumulation of Chromium and Selenium inside cells and in lipids of Chlorella vulgaris Beij. during the incubation from chromium by sodium chloride and selenium, Int. J. Algae, 19(4): 357-366, 2017. https://doi.org/10.1615/InterJAlgae.v19.i4.60.

  18. Maxwell K. and Johnson GN., Chlorophyll fluorescence - a practical guide, J. Exp. Bot, 51(345): 659-668, 2000.

  19. Musienko M.M., Parshikova T.V., and Slavnyi P.S., Spectrophotometric methods in the practice of physiology, biochemistry and ecology of plants, Phytosociocenter Press, Kyiv, 2001. [Ukr.].

  20. Myers J.A., Curtis B.S., and Curtis W.R., Improving accuracy of cell and chromophore concentration measurements using optical density, BMC Biophys., 6: 4, 2013.

  21. Mysliwa-Kurdziel B., Prasad M.V., and Strazalaka K., In: Heavy Metal Stressed in Plants, Narosa Publ. House, New Delhi, pp. 146-181, 2004.

  22. Nguyen-Deroche T.N., Caruso A., Le T.T., Bui T.V., Schoefs B., Tremblin G., and Morant-Manceau A., Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatinsynthase expression of four marine diatoms, Sci. World J, Article ID 982957, 2012.

  23. Ou-Yang H.L., Kong X.Z., He W., Qin N., He Q.S., Wang Y., Wang R., and Xu F.L., Effects of five heavy metals at sublethal concentrations on the growth and photosynthesis of Chlorella vulgaris, Chin. Sci. Bull., 57: 3363-3370, 2012.

  24. Pandey U. and Pandey J., Enhanced production of high-quality biomass, delta-aminolevulinic acid, bilipigments, and antioxidant capacity of a food alga Nostoc hopsislobatus, Appl. Biochem. Biotechnol., 150(2): 221-231, 2008.

  25. Petrovic J., Nikolic G., and Markovic D., In vitro complexes of copper and zinc with chlorophyll, J. Serb. Chem. Soc, 71(5): 501-512, 2006.

  26. Polishchuk A.V., Topchiy N.N., and Sytnik K.M., The influence of heavy metal ions on electron transfer on the acceptor side of photosystem II, Rep. NAS Ukr., 6: 203-210, 2009.

  27. Pospisil P., Production of reactive oxygen species by photosystem II as a response to light and temperature stress, Front. Plant Sci., 7: 1950, 2016.

  28. Rocchetta I. and Kupper H., Chromium and copper induced inhibition of photosynthesis in Euglena gracilis analysed on the single cell level by fluorescence kinetic microscopy, NewPhytol., 182(2): 405-420, 2009.

  29. Rodriguez M.C., Barsanti L., Passarelli V., Evangelista V., Conforti V., and Gualtieri P., Effects of chromium on the photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii, Environ. Res, 105(2): 234-239, 2007.

  30. Sun X., Zhong Y., Huang Z., and Yung Y., Selenium accumulation in unicellular green algae Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments, PLoS ONE, 29(11): 1-8, 2014.

  31. Topachevsky A.V., Methods of physiological and biochemical studies of algae in hydrobiological practice, Nauk. Dumka Press, Kiev, 1975. [Rus.].

  32. Zemri K., Amar Y., Boutiba Z., Zemri M., and Popovic R., Use of chlorophyll fluorescence to evaluate the effect of chromium on activity photosystem II at the alga Scenedesmus obliquus, Int. J. Res. Rev. Appl. Sci, 2(2): 304-314, 2012.

  33. Zhou Z., Li P., Liu Z., and Liu X., Study on the accumulation of selenium and its binding to the proteins, polysaccharides and lipids from Spirulina maxima, S. platensis and S. subsalsa, Oceanol. Limnol. Sin., 28(4): 363-370, 1997.

CITADO POR
  1. Arrojo María Ángeles, Regaldo Luciana, Calvo Orquín Jesús, Figueroa Félix L., Abdala Díaz Roberto Teófilo, Potential of the microalgae Chlorella fusca (Trebouxiophyceae, Chlorophyta) for biomass production and urban wastewater phycoremediation, AMB Express, 12, 1, 2022. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain