RT Journal Article
ID 0b5ee5a86a71f850
A1 Ghysels, P.
A1 Samaey, G.
A1 Van Liedekerke, P.
A1 Tijskens, E.
A1 Ramon, H.
A1 Roose, D.
T1 Multiscale Modeling of Viscoelastic Plant Tissue
JF International Journal for Multiscale Computational Engineering
JO JMC
YR 2010
FD 2010-06-29
VO 8
IS 4
SP 379
OP 396
K1 RVE
K1 computational homogenization
K1 biological tissue deformation
K1 micromechanics
K1 SPH
AB We present a multiscale method for the simulation of large viscoelastic deformations and show its applicability to biological tissue such as plant tissue. At the microscopic level we use a particle method to model the geometrical structure and basic properties of individual cells. The cell fluid, modeled as a viscoelastic fluid by means of smoothed particle hydrodynamics (SPH), is enclosed in an elastic cell wall, modeled by discrete elements. The macroscopic equation and stress tensor are derived from the SPH model by means of the generalized mathematical homogenization (GMH) technique. The macroscopic domain is discretized using standard finite elements, where the stress tensor is evaluated from microscopic simulations in small sub-domains, called representative volume elements (RVEs). Our emphasis is on reconstructing the microscopic state inside the RVE for a given macroscopic deformation and velocity gradient. We propose a scheme to initialize the RVE consistently, not only with the macroscopic variables, but also with the microscopic dynamics.
PB Begell House
LK http://dl.begellhouse.com/journals/61fd1b191cf7e96f,1d67a6c47f821ac8,0b5ee5a86a71f850.html