Inscrição na biblioteca: Guest
Thermal Sciences 2004. Proceedings of the ASME - ZSIS International Thermal Science Seminar II
June, 13-16, 2004, Bled, Slovenia

DOI: 10.1615/ICHMT.2004.IntThermSciSemin


ISBN Print: 978-9-61913-930-1

Turbulence Model of Penetrative Convection and Pollutant Dispersion above Urban Heat Island in Stably Stratified Environment

pages 565-572
DOI: 10.1615/ICHMT.2004.IntThermSciSemin.690
Get accessGet access

RESUMO

A three-equation model of the turbulent transport of momentum and heat for simulating a circulation structure and dispersion pollutant over the urban heat island in a stably stratified environment under nearly calm conditions is formulated. Turbulent fluxes of momentum — <uiuj> and heat — <uiθ> determined from E—ε—<θ2> turbulence model. This model minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the model. The numerical results demonstrate that the three-equation model is able to predict the structure of turbulent circulation flow induced by the heat island that is in good agreement with the experimental data.
The Eulerian models of a dispersion of air pollution are formulated: a high-order closure dispersion model in which the concentration fluxes <uic> are calculated from the transport equations (DC-model), and an algebraic model of turbulent fluxes <uic> (AC-model) obtained by simplification of DC-model to the algebraic expressions in the weak-equilibrium approximation. Both models use mean wind and turbulence quantities from a second-order closure model of the atmospheric boundary layer (the three-parametrical E—ε—<θ2> turbulence model). Results from dispersion of a passive contaminant from the surface source obtained with help DC and AC models show that the maximum difference of concentration level near to a source does not exceed ten percents. Besides it is shown, that diffusion terms of DC-models excluded at obtaining of AC-model, act to smooth out the gradients of the turbulent fluxes. The concentration field calculated with the DC-model turns out more smooth, than calculated by AC-model. The executed verification specifies validity of use of algebraic AC-model in practice of modeling and simulation of turbulent stratified flows and atmospheric contaminant dispersion, in particular.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain