Inscrição na biblioteca: Guest
Annual Review of Heat Transfer
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

HEATED ATOMIC FORCE MICROSCOPE CANTILEVERS AND THEIR APPLICATIONS

pages 287-326
DOI: 10.1615/AnnualRevHeatTransfer.v16.100
Get accessGet access

RESUMO

Atomic force microscope (AFM) cantilevers with integrated heaters enable nanometer-scale heat flow measurements, materials characterization, nanomanufacturing, and many other applications. When a heated AFM cantilever tip is in contact with a substrate, the interface is a nanometer-scale hotspot whose temperature can be controlled over a large temperature range. Over the past decade, there has been significant improvements in the understanding of heat flows within and from a heated an AFM cantilever. There have also been improvements in the characterization and calibration of these heated AFM cantilevers. These advancements have led to new heated AFM cantilever designs and have enabled new applications of heated AFM cantilevers. This chapter describes research into heat transfer fundamentals, cantilever technology, and applications of heated AFM cantilevers.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain