Library Subscription: Guest
ICHMT DL Home Current Year Archives Executive Committee International Centre for Heat and Mass Transfer

FILLING PROCESS IN AN OPEN TANK

DOI: 10.1615/ICHMT.2000.TherSieProcVol2.740
158 pages

Shong-Leih Lee
Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu 30043, Taiwan

S. R. Sheu
Department of Power Mechanical Engineering, National Tsing-Hua University, Hsinchu 30043, Taiwan

Abstract

A numerical simulation for a filling process in an open tank is performed in this paper. A single set of governing equations is employed for the entire physical domain covering both water and air regions. The great density jump and the surface tension existing at the free surface are properly handled with the extended weighting function scheme and the NAPPLE algorithm. There is no need to smear the free surface. Through the use of a properly defined boundary condition, the method of "extrapolated velocity" is seen to provide accurate migrating velocity for the free surface, especially when the water front hits a corner or a vertical wall. Such a methodology does not pose to the Courant criterion, and thus allows large time steps. The numerical results show that when the water impinges upon a corner, a strong pressure gradient forms in the vicinity of the stagnation point. This forces the water to move upward along the vertical wall. The water eventually falls down and generates a gravity wave. These findings are seen to excellently agree with an existing experiment for the free surface evolution and the corresponding total water volume inside the tank. Due to its accuracy and simplicity, the present numerical method is believed to have good performances for simulating viscous free surface flow in industrial and environmental problems such as die-casting, cutting with water jet, gravity wave on sea surface, and many others.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH