Library Subscription: Guest
ICHMT DL Home Current Year Archives Executive Committee International Centre for Heat and Mass Transfer

MOLECULAR DYNAMICS SIMULATIONS OF MASS TRANSFER DUE TO A TEMPERATURE GRADIENT

DOI: 10.1615/ICHMT.2012.CHT-12.220
pages 1-10

Gulru Babac
Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, UK; Institute of Energy, Istanbul Technical University, Istanbul, Turkey

Konstantinos Ritos
Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, UK

Jason Reese


Abstract

The molecular dynamics (MD) technique simulates atomistic or molecular interactions and movements directly through Newton's laws. While to date MD has been mainly applied to study biological systems and chemical processes, there are certain micro and nanoscale engineering applications and technologies that require an understanding of molecular phenomena in order to determine the macroscopic system behaviour. In this paper we demonstrate the application of MD to the benchmark case of the flow of a gas inside a nanochannel connecting two reservoirs with different temperatures. A mass flow is generated between the reservoirs by the thermal gradient − this phenomenon, known as the "Thermal Creep Effect", is not captured by conventional fluid dynamics with the no-slip boundary condition, and leads to unexpected macroscopic observations. We study the effect of the temperature gradient in cases with different densities and we also report the importance of the wall boundary conditions. Detailed and accurate measurements of temperature, density and pressure that are difficult to obtain through experiments are presented. MD simulations can emulate the realistic molecular conditions and flows, and yield new insight into diffusive transport in non-equilibrium gas flows. This paper demonstrates that the engineer interested in studying and designing new nanotechnologies can deploy molecular dynamics as an effective flow simulation tool.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH