Library Subscription: Guest
Annual Review of Heat Transfer
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

ADVANCED CHIP-LEVEL LIQUID HEAT EXCHANGERS

pages 155-198
DOI: 10.1615/AnnualRevHeatTransfer.2015011144
Get accessGet access

ABSTRACT

This chapter reviews single-phase liquid flow in a promising and most relevant length scale for chip-level cooling−O(100 µm). Three rudimentary flow domains are presented and discussed including microchannels, micro pin-fin arrays, and microjets. Important aspects and effects that distinguish the heat transfer and fluid flow processes at the microscale from their large-scale counterparts are summarized and, when applicable, quantified. Channel flow is probably the topic most extensively studied at the microscale, and heat transfer and pressure drop in this fundamental flow domain have been quite extensively reviewed in recent years; therefore, only a very concise discussion is presented in this chapter. Microchannels are not completely ignored as they provide a baseline for the discussion of more advanced heat transfer domains. A review of all pertinent studies about pin fin arrays and microjet arrays is endeavored.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain