Library Subscription: Guest
Annual Review of Heat Transfer
Vish Prasad (open in a new tab) Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
Yogesh Jaluria (open in a new tab) Department of Mechanical and Aerospace Engineering, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
Zhuomin M. Zhang (open in a new tab) George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

ISSN Print: 1049-0787

ISSN Online: 2375-0294

SJR: 0.363 SNIP: 0.21 CiteScore™:: 1.8

Indexed in

Clarivate CBCI (Books) Scopus Google Scholar CNKI Portico Copyright Clearance Center iThenticate Scientific Literature

THERMAL TRANSPORT IN NANOSTRUCTURED ORGANIC-INORGANIC HYBRID MATERIALS

pages 67-126
DOI: 10.1615/AnnualRevHeatTransfer.2016014222
Get accessGet access

ABSTRACT

Nanostructured organic-inorganic hybrid materials hold promise as scalable materials with novel properties that emerge based on the choice of organic and inorganic constituents. These tunable materials have applications in electronics, optoelectronics, energy storage, and energy conversion, where heat is either a focal point in the design, or a parasitic byproduct of operation that must be effectively managed to optimize device performance. Herein, we review the theory and measurement of thermal transport in a wide range of organic-inorganic hybrid materials including single-molecule junctions, self-assembled monolayers, nanocrystal suspensions, nanocrystal arrays, polymer-nanostructure composites, and organic-inorganic molecular crystals. Experiments on self-assembled monolayers find that thermal interface conductance is dominated by phonons and limited by adhesion and vibrational alignment at the organic-inorganic interface. This finite thermal interface conductance bears on the thermal conductivity of nanostructured hybrid composite materials that have extensive internal interfaces. By comparison, little is known about thermal transport in hybrid molecular crystals−a relatively new class of materials that stems from the chemistry of organic and inorganic building blocks ~1 nm in size. Emergent superstructures are less aptly described as composites and instead as unique new crystals (e.g., organic-inorganic perovskites). To complement our review of experimental findings, we discuss theoretical findings and focus on analytical tools that offer a predictive capability for the intelligent design of new hybrid materials. In particular, we consider modified versions of the diffuse mismatch model for predicting thermal interface conductance and several effective medium approximations to predict the thermal conductivity of hybrid materials.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain