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We develop a projection-based dimension reduction approach for partial differential equations with high-dimensional
stochastic coefficients. This technique uses samples of the gradient of the quantity of interest (Qol) to partition the
uncertainty domain into “active” and “passive” subspaces. The passive subspace is characterized by near-constant
behavior of the quantity of interest, while the active subspace contains the most important dynamics of the stochastic
system. We also present a procedure to project the model onto the low-dimensional active subspace that enables the
resulting approximation to be solved using conventional techniques. Unlike the classical Karhunen-Loéve expansion,
the advantage of this approach is that it is applicable to fully nonlinear problems and does not require any assumptions
on the correlation between the random inputs. This work also provides a rigorous convergence analysis of the quantity
of interest and demonstrates: at least linear convergence with respect to the number of samples. It also shows that the
convergence rate is independent of the number of input random variables. Thus, applied to a reducible problem, our
approach can approximate the statistics of the Qol to within desired error tolerance at a cost that is orders of magnitude
lower than standard Monte Carlo. Finally, several numerical examples demonstrate the feasibility of our approach and
are used to illustrate the theoretical results. In particular, we validate our convergence estimates through the application
of this approach to a reactor criticality problem with a large number of random cross-section parameters.
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1. INTRODUCTION

A large number of phenomena in science and engineering are modeled by a map from a set of input data, i.e., model
coefficients, forcing functions, boundary and initial conditions, geometry, etc., to an output quantity of interest (Qol).
This mapping is typically achieved by virtue of one or more differential and/or partial differential equations (PDES).
However, in practice, the deterministic exact values of the input data are seldom known as they are affected by un-
certainty. Such uncertainties can be included in the mathematical model by adopting a probabilistic setting, provided
enough information is available for a complete statistical characterization of the physical system. Once the probability
distribution, either given or through a calibration procedure, of the input random data is known, the goal of the compu-
tational simulation becomes the prediction of statistics (mean, variance, covariance, etc.) of a Qol, or the probability
of some given responses of the system. In this setting, stochastic formulations are utilized to account for this random
behavior, enablingincertainty quantificatiofUQ) in practical applications. In particular, the input data are modeled
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as random variables, and the underlying dynamics originally described by a set of PDEs, are naturally transformed
into stochastic parameterized PDEs (SPDES).

In this work we focus on Qols coming from the solution of SPDEs whose coefficients and/or forcing terms are
described by a finite dimensional random vector; either because the problem itself can be described by a finite number
of random variables or because the input coefficients are modeled as truncated random fields. We especially address
the situation where the input data are assumed to depend on a large number of random variables.

One patrticular problem of interest comes from the physics of a nuclear reactor. The behavior of a nuclear reactor
depends on the flow of neutrons through the reactor core and the flow of neutrons itself depends on a large number
of cross-section parameters that describe the way various types of materials (i.e., nuclear fuel, control rods, coolant,
etc.) interact with the neutron field. The number of the parameters is oftentimes in the thousands or even tenths of
thousands and recent advances in simulation techniques allow us to resolve the neutron flow for problems with realistic
complexity [1]. However, transport solvers still assume that the values of the cross sections are known exactly, while
in practice, those are measured experimentally and hence they come with a potentially wide range of uncertainty. The
neutron transport problem is an excellent candidate to motivate our gradient-based reduction approach, as it offers a
particular set of challenges: including a significantly large number of (potentially uncorrelated) input parameters with
a wide range of uncertainty, and significant computational cost associated with each realization.

Sensitivity analysis (SA) is technique for estimating the first two moments of the Qol [2]. The derivative of the
Qol with respect to the random input data is used to form a local linearization of the PDE, and then the distributions
of the input parameters are propagated through the simplified model. In essence, the expectation is approximated by
evaluating the Qol at the nominal (mean) values of the random inputs and the variance is approximated via a “sandwich
rule” using the gradient of the Qol and the covariance matrix. Computationally, SA is relatively cheap, however,
for a general nonlinear Qol, the accuracy of the linearization away from the nominal point deteriorates quickly, and
therefore is only feasible for problems where the size of the noise is relatively small. Yet, many engineering and science
applications are affected by a relatively large amount of uncertainty in the input data, and an accurate approximation
of the Qol over the full range of uncertain inputs is a desired result.

The Monte Carlo (MC) family of methods (see, e.g., [3]) for random sampling is the classical and most popular
approach for estimating statistics of Qols that depend on the solution to a SPDE with a large number of random
inputs. When coupled with a discretization in fiteysical domaine.qg., finite elements, finite difference, finite volume,
spectral, or eveh-p, the MC approximation is based on independent identically distributed (iid) realizations of the
input parameters; approximations of the expectation or other moments of Qols are obtained by simply averaging over
the corresponding realizations of that quantity. As such, the MC method requires a deterministic solution of the PDE
for each realization of the input parameters, making it simple to implement, allows for maximal code reusability,
and is straightforward to parallelize. The resulting numerical error is proportioria) tdk), wherek is the number
of realizations. The advantage of using the Monte Carlo sampling approach is that the convergence rate does not
deteriorate with respect to the number of random variables in the problem, making the method very attractive for
problems with a large number of random inputs. When solving large-scale applications for which numerical solutions
of the PDE are expensive to obtain, the exponiet in the rate of convergence generates a tremendous amount
of computational work in order to achieve accurate solutions. Other ensemble-based methods such as quasi-Monte
Carlo (QMC), Latin hypercube sampling, lattice rules, orthogonal arrays, etc. (see, e.g., [4, 5] and the references
cited therein), have been devised to produce “faster” convergence rates, e.g., proportiongkié™) /k), where
r(N) > 0 grows with the numbeN of the random input variables, and thus, deteriorating convergengeraseases.

More recently, alternative approaches for approximating SPDEs, that utilize standard approximations in the phys-
ical space, and stochastic polynomial approximations, using either Galerkin projections or Lagrange interpolation,
in the probabilistic domain, have gained considerable attention. These methods are typically known as stochastic
Galerkin (SG) and stochastic collocation (SC), respectively, and both techniques exploit the regularity of the solution
to acquire faster convergence rates. Moreover, to combat the explosion in computational effort, causeitse the
of dimensionalityapproximations are employed in sparse [6—16] or piecewise polynomial spaces [17-23]. However,
theintrusivenature of the SG approach requires solving a system of equations that couples all degrees of freedom in
the approximation to the stochastic solution. As such, as the number of random inputs grows, then the corresponding
number of degrees of freedom is prohibitively large. SC offen@intrusive ensemble-based approach, similar to
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Monte Carlo, for constructing a fully discrete approximation over the entire range of probabilistic inputs. Moreover,
as shown in [11, 12], the sparse grid SC approximation of SPDEs in which the input random variables come, e.g.,
from Karhunen-Leve -type truncations of “smooth” random fields, the convergence rate is at least sub-exponential,
and in some particular examples is independent of dimension. However, in general, when the parameter space is truly
high-dimensional and/or the solution exhibits steep gradients, sharp transitions/bifurcations, or jump discontinuities,
all SG and SC methods converge very slowly or even fail to converge. As such, to effectively exploit the fast conver-
gence of both the SC and SG approaches, it becomes necessary to reduce the parameter dimensions to a moderate size
of the most important random variables.

For a second-order stochastic process, the Karhunéme (KL) [24, 25] expansion is the most common dimen-
sion reduction technique associated with random input data of a SPDE. KL creates a lower dimensional representation
to the inputs that preserves the mean and yields an increasing accurately approximation of the variance. However, KL
requires prior knowledge of the correlation between the inputs and the existence of a suitable low-dimensional repre-
sentation is contingent upon the inputs being strongly correlated. Therefore, this approach is not feasible if the inputs
are uncorrelated and, even if a low-dimensional representation of the uncertainty exists, the relation between the er-
ror in the KL projection and the corresponding discrepancy in the statistics of the Qol is not rigorously defined for
nonlinear problems.

A new reduction approach for approximation SPDESs that depend on high-dimensional parameter spaces by com-
bining the advantages of MC sampling with SA [26—30]. Monte Carlo sampling is used to compute the sensitivities
(i.e., derivatives) of the Qol in order to construct a subspace that approximates the span of the gradient of the Qol.
Consecutively, the problem is projected onto the resulting low-dimensional subspace, thus reducing the number of
inputs and allowing for the application of QMC, SC, and SG techniques. This method is similar to an approach pro-
posed in [31, 32], where the dominant singular values of a matrix are inferred from the action of the matrix onto a set
of random Gaussian vectors, i.e., every component of the vector is sampled independently from a Gaussian distribu-
tion. However, in general, the gradient is not a linear function of the inputs and if it is represented as a product of a
matrix and a nonlinear vector function (e.qg. [28]), the samples from the nonlinear function do not follow the Gaussian
distribution. Therefore, the error estimates in [31, 32] are not applicable. Furthermore, even if the gradient depends
linearly on the input parameters, these error bounds relate to the discrepancy between the computed and actual domi-
nant singular values of the matrix, while in context of SPDEs, we are interested in the error in the projection of the Qol
(which is associated with the neglected small singular values). The gradient sampling method has been successfully
applied to several problems, however, it suffers from the lack of rigorous error bounds, relating the approximation of
the gradient samples to the error in the statistics of the projected Qol.

The main contribution of this work is to develop a rigorous approach for gradient-based dimension reduction of
SPDEs with high-dimensional random inputs. In particular, we propose an approach to idenpifgshesubspace,

i.e., where the Qol is constant or can be accurately (within small error tolerance) approximated by a constant, and then
project the problem onto thea¢tive orthogonal complement, subspace. Moreover, we also derive rigorous bounds
relating the error in the statistics of the projected Qol to the error in the approximation of the gradient samples. In
the case that the Qol is the variance of a vector that depends linearly on the inputs, our approach is equivalent to
Karhunen-Lé&ve expansion. However, our results extend for higher statistical moments, fully nonlinear problems,
and does not require any assumptions on the correlation between the random inputs. Our analysis reveals, that in
the worst case, the convergence rate is proportionél tb) and independent from the dimensionality. As such, for
problems with low-dimensionalctive subspace, the method has definite advantage over the classical Monte Carlo
sampling. Moreover, as our humerical examples reveal, this linear rate of convergence is sometimes an overestimate
and a suitable projection space can be identified with even fewer samples.

The rest of this paper is organized as follows, in Section 2 we define the abstract problem setting and introduce
the mathematical problem and the main notation used throughout. In Section 3 we present the analysis that relates the
error in the projection of the Qol to the error in the approximation of the gradient. In Section 4 we present a numerical
sampling-based algorithm for approximation of the gradient of the Qol and provide the rigorous error analysis of
our approach. In Section 5 we present three numerical examples where we apply our method to: a KL expansion
involving random matrices (see Section 5.1); a highly reducible random parameter problem (see Section 5.2); and a
neutron transport problem with uncertain cross sections (see Section 5.3).
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2. PROBLEM SETTING

We begin by following the notation in [11, 12, 33] and Bt C R¢, d = 1,2, 3, be a convex bounded polygonal
domain inR<¢, d = 1,2, 3, and(Q, F, P) a complete probability space. We létbe a differential operator, linear or
nonlinear, defined on a domain, which depends on some coefficient{g)v, ) with x € D, w € Q. HereQ is the
set of outcomesF C 2% is theo algebra of events, anit : F — [0, 1] is a probability measure. We are interested in
the following stochastic boundary value problem: findQ x D — R™ such thatP-almost everywhere if®

L(y)(u) =0 inD, 1)

equipped with suitable boundary conditions. Typicallydefines a physical system by virtue of ordinary or partial
differential equations, however, the analysis presented in this work is agnostic with respect to any specific structure in
the model. We denote b/ (D) a Banach space of functioms: D — R and define, foi € [1, oo], the stochastic
Banach spaces

LL(Q) ® W(D) := {u . QxD—R™ ‘ /Q ullfy 1y dP(w) < +oo} )

We are particularly interested in the case whes 2 as we assume the underlying stochastic input data are chosen
so that the corresponding stochastic partial differential equation (1) is well-posed so that it has an unique solution
uw(w,z) € L%(Q) ® W(D), consisting of Banach-space valued functions that have finite second moments. Finally,
we note that in this setting the solutiarncan either be a scalar or vector-valued function depending on the system of
interest.

We also assume that the stochastic coefficigrits, z) depend on a finite-dimensional real-valued vector of
independent random variablgs = [y1(w),...,yn(w)] : & — RY with N € N,. Then, the solution: of (1)
depends on the realizatian € 2 through the value taken by the random vegjor.e.,u = u(w, z) = u(y(w), x).

Below we give an example of the typical finite-dimensional noise decomposition. However, we note that this is not an
assumption of our sampling approach or the accompanying convergence analysis.

Example 1. (Stochastic input data)

In many applications, the stochastic input data may have a simple piecewise random representation whereas, in other
applications, the coefficientsin (1) may have spatial variation that can be modeled as a correlated random field,
making them amenable to description by a Karhuneaweo(KL) expansion [24, 25]. In practice, one has to truncate

such expansions so that they are of the form

N
Y(w, ) = y(y(w),x) = yo(w,z) + D yn(w)ba (), ©)

n=1

where the numbelV terms retained depends on the regularity of the given covariance function and the desired
accuracy of the expansion. Please see [11, Section 2.1] for detailed descriptions of both types of noise.

In what follows, we denote by,, = v,,(2) C R the image of the random variabje, then sefl” = Hﬁ;l r, =
y(©), and assume that the components of the real-valued random weetdy; (w), ..., yn(w)] : & — RY have a
joint probability density function (PDF)

p:I' >Ry with p(y) e L>®(T),
wherep(y) = ngl pn(yn) if the random variables are independent. Therefore, the probability $pade P) is
equivalent to(T", B(T"), p(y)dy), whereB(T") is the Borelo-algebra ol and p(y)dy is the finite measure of the

random vectoy. In this setting the stochastic Banach spagg(?) is equivalent ta.§ (I"), consisting of functions on
T with respect to the measupéy)dy.
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Therefore, the solution of the state equation (1) is an unique square integrable funetiaity, =) € L%(F) ®

W(D), for anyy € I' andz € D. The goal of this effort is to construct statistical information related to an output
Qol, as a function of the random vectpr= [y, . . ., yn|, by evaluating the map

that we assume depends on a high-dimensional subdpac&” . Here, by high-dimensional we really mean that
N =dim(T") ~ O(100).

Remark 1. (Support of the joint PDF)

Even though the support BfC R may be bounded, we assume th@p) is defined over all oRY . If I" is a bounded

domain then we set(y) = 0 outside the regioii’. We note that the is strictly an artifact of the projection techniques
described in Section 2.1 and the analysis presented in Section 4, and has no effect in the main convergence rates
described in Theorems 2 and 3.

Moreover, in this effort we focus on complex stochastic problems defined by (1), where, given a gample T’
evaluating the Qol (4) is computationally expensive. However, we assume that we can compute the grédignt of
at a specific random vectey, denotedvVQ(y), with comparable cost to the computation of the valu€¢f). We
remark that in this effort the gradient operafér= 9/0y denotes the gradient with respectgamnly. Finally, we
focus on constructing a numerical approximation of the expected value of the Qol, namely

E[Q) = /F Qy)o(y)dy, )

however, higher order statistics of the Qol and the gradient can also be approximated by rep(@giagdVQ(y)
with
Qr(y) = (Qy) — E[Q])*, andVQy(y) = k(Q(y) — E[Q)*'VQ(y), k € N4,

respectively. Note from Remark 1 that singéy) = 0 wheny ¢ T', we can extend)(y) arbitrarily outsidel’
[i.e., defineQ(y) = 0 for y ¢ I'] and thus the integral (5) can be defined over alRéf.
Next we give an example problem posed in this setting:

Example 2. (Neutron transport with stochastic cross sections)
In one spatial dimension, i.& = [0, 1], thek-eigenvalue transport problem in strong form with finite uncertainty in
the capture, scatter, and fission cross sections, denmtégl x), o,(y, z) and o (y, =) respectively, is given by [34]

u%(yw, W) + or(y, 2)b(y, =, 1) = 0,(y, 2)d(y, z) + @"f(y»w)d)(y,x) fora.e.x € D,6 € [0,7], (6)

wherep = cos(0), or(y,z) = o.(y,x) + 0s(y,x) + 0¢(y,z) measures the uncertainty in the total cross-section,
V(y, z, 1) is the random angular flux measuring the uncertainty in the density of neutrons at logatioP in the
direction®, ¢(y,z) = 1/2 f_ll Y (y, z, w)du is the uncertainty in the total number of neutrons at locatigrand-v
is the average number of neutrons emitted after a fission reaction.

If we let the cross sections have a finite stochastic representation simi(@) tbat is uniformly bounded and
coercive, i.e., for the total cross section (y, -) there existery, . > —oco andor,, .. < +oo such that

PlweQ : or,, <or(y(w),z) <or,,, VreD]=1, @)

and similarly for the fission, capture, and scatter cross sections, (Beratisfies all the above assumptions with
W(D) = L*(H'(D);0, ). Of course, in this setting, the operat6rfrom (1) corresponds to the eigenvalue problem
(6), the coefficients correspond to the cross sections, and the Qol descrilféylibyhe stochastic eigenvalugy).
Similar to (5) we are interested in computing the expected valuk-effective, whose value determines whether a
reactor is sub-critical E[k] < 1, super-critical, E[k] > 1, or critical, E[k] = 1.
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When the amount of uncertainty is large, thadis= dim(I") is high-dimensional and the range of each parameter
is large, and if calculating the Qol (4) is costly (e.g., see Example 2), then approximating (5) becomes computation-
ally infeasible. Any deterministic quadrature approach, e.g., tensor products, sparse grids, quasi-Monte Carlo, latin
hypercube sampling, etc. will suffer from tloeirse of dimensionalitgince the rates of convergence depend on the
dimensionN. Of course, we could directly apply a random sampling approach, such as Monte Carlo, however, the
convergence rate is quite slow and a high level of accuracy is achieved only with a substantial amount of function eval-
uations. As such, the goal of this effort is to reduce the amount of uncertainty by accurately quantifyMggh®
most active dimensions having the largest influence on statistics of the Qol. Then, one can apply any stochastic
polynomial approximation technique to approximétéy), e.g., spectral-Galerkin, stochastic collocation, piecewise
locally adaptive, etc., or a deterministic sampling technique to compute (5) directly. To accomplish such stochastic
dimension reduction we utilize a random sampling procedure, however, instead of sa@jindirectly we instead
sample information from the gradiemQ(y). In doing so, we analytically show that this approach converges at least
linearly in the number of samples when approximating the expected value of the Qol given by (5).

2.1 Active and Passive Subspaces

In general, the dimensioV of the random domaifi may be very large priori, however, the random parameters
1 - - -, yn typically do not all have equal influence on the desired Qol. For example, in many practical applications, the
Qol is close to invariant under perturbationgpfvith arbitrary size for most directions. The largest possible subspace
over which the Qol exhibits constant or near-constant behavior is what we define Eastieesubspace, denoted
AP ¢ RN . Moreover, we also define tlaetivesubspacé® c R” as the orthogonal complement®?f, i.e. A* | AP
such that every € A® & A? = RY can be decomposed gs= y* + y? with y, € A?, y? € AP and(y®, y*) = 0.
Finally, we define the orthogonal projection operatBgs and Fy» S0 thaty® = Fpay andy? = Fary.

From our assumption in Section 2 th@aty) is approximately invariant under perturbationgyah the direction of
y? € AP, we can define the projection of the Qol (4) onto the subspﬁms@ : FaoT' — R. Special consideration
has to be given to the case wheR.I' ¢ T, since@ has to be defined for valueg' € Fj.I" with y* ¢ T, in which
caseR)(y®) may not have a trivial extension, e.g., the PDE may be ill-posed. A visual representation of the projection
problem can be observed in Fig. 1. Singee Fy.I" implies the existence af € I so thatFy.y = y*, and since)
is assumed to be approximately invariant in directighs= y — y* = Fary € AP, we defineQ(y*) as

oy ¢’
o\yel“
%
qyeF e A“NT
¢ecl
/y y €
r

FIG. 1: A two-dimensional simple illustration of a bounded supdodf the probability density function as well as
the projection on the low dimensionattivesubspace\*.

International Journal for Uncertainty Quantification



Dimension Reduction for SPDEs 55

R Q(y"), y* el
Qy") =1 0, Yy +yP ¢ VyP € AP, 8
Q(y* +yP), foranyy? € AP suchthaty® + y? € T.
By this definition,Q(y* + y?) = @(y“) for all y?» € AP and we can project (5) ontd® by virtue of
/ y)dy = / A QY +y")e(y” + y*)dy’dy”
~ [ Qw / ol +v)dydy” = [ QB iy ©)
where
o) = [ oty + 9"y (10)

is the projected probability density function defined oXér Therefore, our goal is to construct suitaAfeand, using
(8)—(10), efficiently project the high-dimensional integral (5) onto the low dimensional subApawith dim(A*) <
N, such that

Q(y)p(y)dy Q( “)p(y*)dy” (11)

RN

with € a predefined error tolerance. The advantage of working with the lower dimensional projected integral is that
we can compute (9) using various collocation or polynomial approximation techniques. However, assuming we are
givenA® and AP, the next remark describes specifically how we project the PDF multivariate Gaussian distribution.

Remark 2. (Projecting a Probability Density Function) ,
For the specific case that the PDF is a multivariate Gaussian distribution,d(g.) = [e—1/2I¥17]/[(27)N/?], we
want to project the PDF on the low-dimensional space We can exploit the orthogonality af and AP and obtain

o sllye I

~roa\ __ a Y4 p_ _ -
p(y*) = /A p(y* +y")dy” = () TR

Similar result holds for other distributions such as uniform distribution oniamall centered at the origin and
truncated Gaussian distribution (so long as the truncation is done at the boundary (6fkzail). A more general
distribution is not trivial to project and one may be unable to derive a density function in closed form. In many prac-
tical applications, even if computing realizations of the Qol, givelid)yare computationally expensive, computing
samples of the random vectgmay be cheap. Hence, we can use these samples to approxiimatn integral over

a small regionV,.. aroundy®, i.e., for anyy® € A% N Vya

1
/ / “ +yP)dyPdy® = Iv,.(y)e(y)dy, (12)
|Vy | AenVya JAP ‘Vy | RN

where|V,. | indicates the multidimensional volumelgf. ¢ A and

1, Fpray € Vya,
Tvye ( ):{0 0.[1\u.y !

Without considering the computational cost, assume we can generate a large number of ganjples then (12)

can be approximated by a Monte Carlo method. Furthermore, this sampling technique can also be useful to find the
value ofQ(y*), wheny® ¢ I'. Thatis, if[y (y;) = 1 and ify® + Fyry; € I, thenQ(y®) = Q(y* + Fary:). We note

that the details of such a sampling approach are described in Section 4.
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3. THE GRADIENT AND THE ERROR

To accomplish our objective of constructing andA® we utilize random samples of the gradient of the Qol, denoted
{VQ(yi)}le, described in Section 4. First, we need a result regarding the relationship between theieroor
approximation (11) and the gradient of the Qol. In what follqws) denotes the standard inner produckifi.

Theorem 1. (Gradient bound)

Let subspaced®, A? C R¥ be such that\® | AP and A* & A? = R¥. Furthermore, suppose the probabilistic
domainl’ ¢ R¥ is convexQ(y) is continuously differentiable ovét, and define for every € T the setA?(y) =
{y? € AP : y + yP € T'}, Then, if there exists a probability density functipn RN — R, ande > 0, that satisfy
either

Qv +w) — Qv)|p(v +w) < eg(v+w), Yvel, Vw e AP(v) (13)
or X
/0 (VQ(v + sw),w)ds| p(v + w) < eg(v+w), Yvel Vwe AP(v) (14)
or
(VQ(v + sw),w)|p(v +w) < eg(v+w), Vvel, Vwe AP(v),Vs e [0,1], (15)
then we have that
Jew - e, ., = [ [ew) - aEew)owiy < 16)
as well as
[ Qwewdy - | Qy)ply*)dy”| < e, (17)

where the operator Wit@(y“) andp(y®) given by(8) and (10) respectively.

Proof. We begin by noting that

Qe(y)dy - | Qy")p(y*)dy"

< [ |ew - asw)|owiy.
RN RN
and therefore (16) implies (17). Using the convexity'odnd the differentiability of(-) we apply the Fundamental
Theorem of Calculus to the left-hand-side of (13) which yields

Q@ + w) — Q)| p(v + w) = / (VQ(w + sw), w) ds| p(v + w) < / (VQ(v + sw), w)| p(w + w)ds.

Therefore, (15) implies (14), which in turn implies (13) and thus all we need to show is that (13) implies (16). To get

~

this, we assume (13), we defiddy) = |Q(y) — Q(Faa y)’ p(y) as the integrand of (16) and we consider the four
possible scenarios fay and the corresponding projectidfi.y (see Fig. 1 for a visual of these cases):

Case L:if y ¢ T, thenp(y) = 0 and thusD(y) = 0;
Case 2:if y e ' N AY, then@(FAay) = Q(Fr-y) = Q(y) and thusD(y) = 0;

Case3if y e I', y € A* andy® = Fp.y € I, theny — y® € AP(y®), and we can apply condition (13) with
v =y*andw =y — y*, to get thatD(y) < eg(y); and

Case 4iif y € I', y ¢ A%, andy® = Fp.y ¢ T', then by definition (8), there ig” € A? so thaty® + y* € T and
Q(y*) = Q(y*+yP). Sincey —y® —y? € AP(y* +yP), we can apply condition (13) with = y° + y?
andw =y — y* — yP, to also get thaD(y) < eg(y).
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As such, in all cases fay we have thaD(y) < eg(y), and therefore,

/ Q) — O(Frey)loly) < / caly)dy = .
RN RN

O

Remark 3. (Global support)
If I = RY, theny® will always be inI" and we do not need to consider the fourth case of Theorem 1. Therefore,
conditions (13)—(15) can be weakened, and need only hold éoA“ (as opposed to € I).

Remark 4. (Alternative condition)
Condition (15) is equivalent to

(VQ(y +9P),sy?) |p(y + sy?) < eg(y +syP), Vy e, Vy’ € AP(y),Vs > 1, (18)

which in turn implies (16) and (17). We will utiliZd8) in the sampling algorithm described in Section 4, since for
pointy and corresponding value &7 Q(y), we can examine all values eby considering(-) andg(-) only. This is
unlike conditions (14) and (15) that require knowledgé&/@}(y) for a range of the uncertaintieg® + sy®.

Corollary 1. (True dimension)

LetA? , = {veRY: (v,VQ(y)) =0,Vy € I'}, then conditions (14) and (15) are satisfied with= 0 for any
arbitrary functiong : RY — R.. Therefore, we can projec® : I' x D — R without loss of information and the
actual dimension of the Qol & — dim(A? ).

null

Corollary 2. (Low-dimensional surrogate) R
Suppose there exists a functidiy®) that approximate<)(y®) in the low-dimensional spac&®. ThenZ(Fj.y)
approximates)(y) and satisfies the following estimate:

10 Fae = Qlly@y) <17 = @Qllpy ey + 1Q o Fra — Qllry ®w).-

Our main focus remains the approximation of the integral (5), however, Corollary 2 allows us to utilize the low-
dimensional spacA® to create a surrogate model f@{(y). Since the dimension oi® is small relative tal’, we
can apply various stochastic polynomial methods, such as spectral Galerkin or collocation approximations. In the
next section we explain how our our gradient-based approach, for stochastic dimension reduction, can be viewed as a
generalization to the classic finite-dimensional Karhuneéveoexpansion [24, 25].

3.1 Relationship to the Finite-Dimensional Karhunen-Lo éve Expansion

Consider the case where the componenty of R” are identically and independently distributed as normalized
Gaussian variables, i.e; € N(0,1),...,ynx € N(0,1) with p(y) = e~ /2I¥I* /(27)N/2_ Next, we define

uw(y) =Ly, and Q(u(y)) = |ul* =y "LL"y =y Cy, (19)

whereC = LL" is the covariance matrix af and the integral of the Qa} is the variance of.. Here we assumé'
is nonsingular, that is, the actual dimension of the problem is indée@iven the simple expression for Qol allows
us to easily find the gradient 6§(y) as

VQ(y) = 2Cy. (20)

From Theorem 1 and Remark 3, we séekand AP that minimizee > 0. First, we consider the simplest case where
dim(AP) = 1. In this case, we want to fing? that minimizes (14), that is,

min

1
A / (VQ" +sy”),y") ds| p(y" +y7), Vy” € A”andy” L y”. (21)
P 1Jo
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Substituting (21) into (20) yields

1 1
/ (VO +sy”), ") ds| p(y" + y") = min / 2(y?) " Cy” + s2(y?) T CyPds| p(y* + y")
0 P 1Jo

I%in
1 22)
2(yP) Cy* + 52(yp)TC’y”ds

j— 1 a p
= min p(y" +9y").

The minimum of (22) is achieved whek? is the eigenspace that is associated with the smallest eigenvaluie of
i.e.,Cy? = Aniny?. SinceC is symmetric positive definitgy® 1. CyP, and therefore, we get that

o bl P l? o sl P l?

2T CyP PYT (CqyP = (yP\T CyP
2(y*)" Cy? + (y*)" Cy Ii(%)m (y") Cy )7
_ » 26—%Hy“+y"|\2 B
= )\min”y || W = )\ming(y)~ (23)

Since[ g(y)dy = 1, if we apply Theorem 1 with condition (14) amd= A,,i,, the final error associated with reducing

the uncertainty domain by one dimension is bounded.lBy extrapolating this result, we can reduce the dimensions
recursively and deduce that the passive subspace is the span of the eigenveCt@ssotiated with the smallest
eigenvalues. Moreover, the theoretical error bound is the sum of the neglected eigenvalues. This result is equivalent
to the classical finite-dimensional Karhunenéve expansion, however, our projection approach extends to problems
with far more complex structure than linear functiangjuadratic functional®(u), and Gaussian random variables

y [24].

4. THE SAMPLING APPROACH AND ERROR ANALYSIS

In practice, we seldom have analytical form of the gradient of the Qol (4), and therefore, we have to create an approx-
imation to bothA? andA®. More importantly, the possible choices fof andA* may not be unique and so we define
A* andAP to be any two subspaces that satisfy any of the condition in Theorem 1. Without loss of generality, we will
focus our attention on the condition (18), defined in Theorem 1, however, our approach and analysis extends to condi-
tions (14) and (15) as well. Furthermore, we want to project the Qol on a subspace with smallest possible dimension.
As such, we attempt to discover subspaces suchthaias the smallest possible dimension, or alternativiétyhas
the largest possible dimension.

To accomplish these goals we propose a Monte-Carlo-based random sampling approach. That is, given a desired
tolerancee > 0, we takek random samples, i.e{y;}%_, € RY, where eacly; is independently sampled from distri-
bution with probability density. For each sample, we comp&)(y;) and use the gradients to find a decomposition
that approximated? and A®. Since we cannot analytically verify condition (18) over the entire domain, we weaken
the requirement so that it holds only with respect to the computed sal{r‘@t@(;yi)}le. Hence we need a procedure
to form A* and AP from an already computed set of gradient samples.

Our specific approach for forming this approximation is problem dependent. We require the definition of a map
J : RY — RY that associates a finite subset®Rdf with a subspace @& ”". That is, letl’ be a finite set of vectors in
RY andA® = J(T), a subspace d&”, so that if A? is the orthogonal complement &f*. Then (18) is satisfied for
all VQ(y;) € T. Of course, the structure of the mdglepends or andg(-). One possible choice is to take

J(T) = spa{VQ(yi) }y;er, (24)

which guarantees (18) remains valid for all> 0. However, it is more desirable to choose the niaghat returns

a subspace with smallest possible dimension. Hence, a more practical approach would be to use a procedure that
weightsVQ(y;) and returns the subspace spanned by only some of the samples. A common approach to this type
of problem is to look at different eigenvalue problems. Below, we give two examples of specific choices for the map
J(T). Here we suppose we are given a set of vecfoend tolerance, and we wish to construct the mag7’) that
decomposeR” so that condition (14) or (18) is satisfied for gll € T..
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Example 3. (Compact support and the choice of (T))
Suppose the PDB has compact support iR, i.e., there exists a constantsuch thatp(y) = 0, V|ly|| > r. In
this case, if we ley(y) = p(y) the (18) is satisfied for ally|| > r, regardless ok, and therefore, we only need to
consider||y?|| < r or s < r/||y?||. As such, we arrange the vectd&)(y;) into the columns of a matrif/. We
defineA, to be the space spanned by thdominant singular vectors aff, wherel is chosen so that thé ¢ 1)st
dominant singular valu@, ; satisfies

rAi+1 < €.

Then, if we takg? L A® such that|y?|| < r and considefVQ(y;), sy*), which is largest when = r/|y?||, we
get that

r
(VQU).ov") < (V). v’ ) < v <
Therefore, condition (18) is satisfied wittt = J(T') forall y; € T.

Example 4. (Finite-dimensional Karhunen-Lcéve expansion and the choice of (T'))
Similar to Section 3.1 we lef(y) = y“Cy andp(y) = e~ /DIl /(27)N/2 We want to construct a procedure
that will map a set of vectors to a subspace, with smallest possible dimension, that satisfies condition (14). That is,
forA e Ry:

< VQyi).y" > <2Ally?|?,  vy” LJ(T), vy €T (25)
First, considerA? = J(T)*, and observe that thepan{VQ(y;)}* satisfies (25) for allA > 0, and thus,
span{VQ(y;)}*+ C AP. Second, we need to classify thean{VQ(y;)}. Letv € span{VQ(y;)}, i.e.,

v = Z ¢ VQ(y;) = He, (26)
i=1

wherem = card(T'), ¢ € R™ and H is the matrix with column¥ Q(y;). Substituting26) into (25) and observing
thaty? = (< v, y? >/|[v|*)v, we have that

< VQ(yi), He >| < 2\ |< y;, He >|. 27
By letting £ be the matrix with columng; (27) reduces to the generalized eigenvalue problem
HTHe =2 ETHe, (28)

where the eigenvalugs\; };* ,, placed in descending order, are real and positive. We then fg&8 to be the space
associated withH ¢;, wherec;, I = 1,..., N < N, are theN® dominant eigenvectors. To select the cutoff value
of A, we use the eigenvectors associated with the dominant eigenvaluds; et be the operator for orthogonal

projection ontaJ (7)+ and multiply both sides of (25) y(y;)

ly]1?p(y:)
T FyeryEl2p(E)dE’

< VQ:), " >| ply:) < 20 / 1Py £]12p(£)dE

which matches condition (14) wit(y) = [|F; ¢ yl*e(y)/ [ I|1F;er+ &E]*p(&)dE and

€= 27\/ IEsy- El?p(E)dE = 2A (N —n), = A= 2(%—71))7 (29)

wheren = dim(J(T")). We can use the estimate (29) to select a cutoff valuk, foowever, we should note that when
dim(J(T)) < N and the eigenvalues @f decay very fast, (29) is a big overestimate.
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Given an appropriate mapping(7'), we consider thé: samples{VQ(y;)}*_,. We split the samples into two
groups. First we look for the smallest subset of the samples {VQ(y;)}%_, such that/(T) is a subspace that
satisfies condition (18) not only with respethNFd)ut also with respect tall other samples. Thus, the sample§~1n
we callessentiabnd the remaining ones are the set ofdkier-samplesin nontechnical terms, thessentiasamples
are used to identify the dynamics of the Qol and since they are randomly selected, it is possible that they fail to capture
all aspects of the behavior ¢f(y). Theover-samplefiad an opportunity to discover any missing dynamics and no
such dynamics were found, hence the maver-samplesve have, the more likely it is that we have identified the
full behavior of the Qol. Thessentiasamples are needed to identify the approxinpetssiveandactivesubspaces,
while theover-sampleare related to the confidence that we have in the approximation. This relationship is quantified
in Theorems 2 and 3.

Algorithm 1 summarizes the sampling procedure, wheisthe desired tolerance, and at iteratiowe haveA?,

A% anddy, as, respectively, the approximaiassiveandactivesubspaces and the numbemwkr-samples

Algorithm 1: Approximate the passive subspace.
SetAl = RY, A¢ = {0}, dy = 0 and the tolerance:.
fork=1,2,...,do
Sample the random vectgt* < I" with PDF p(y), and evaluate the gradient at the sample point, i.e.,
VQ(y").
if (18) is satisfied using/ Q(y"*) with A, AL, then
| SetA] — A}_, andAf — A¢_, and incremendy, = dj 1 + 1.
else

if (18) isnot satisfied usingZ7Q(y*) with A} |, A¢_, then
DefineT = {T € 2wt ey J(T) satisfies (18)fyi} andT e 7 with cardT) < cardS),
vSeT. _
Set the active subspadg — J(T') with A} being its orthogonal complement.
Setd;, = k — cardT).
endif
ndif
dy, is sufficiently largehen
Stopthe iteration and use projection (9) wiltt = A¢ andA? = A} to reduce the dimension of the
problem.
endif
endfor

= 0

Obviously, Algorithm 1 requires a proper convergence criterion with respect to the numbeeresamplesgly,,
More importantly, recall from (11) that what we really want to know the error we commit in approximating the
expectation of our Qol, when using our projection into the active subspacklowever, when using the sampling
approach described by Algorithm 1 we construct an approximaltjoand thus, we are interested in the error at the
kth iteration, defined by
) (30)

€ =

» Q(y)p(y)dy — § Qr(y*)or(y")dy"

wherepy (y®) = fAr,; Q(y* +yP)dy? andQ;, denotes the projection of the Qol (4) onto the subsp@cand@k(y“)

is defined by setting”? = A7 in (8). Next, using (30) we present two theoretical results that describe the probability
of finding the active subspac¥, using Algorithm 1, and the distribution of the error with respect to the number of
samples. These are given in the following two theorems.
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Theorem 2. (Probability of failure)
Given a realization of Algorithm 1 with toleraneeande;, described by (30), there is a sequence of numbers R
such that the discrete (or boolean) probability measure satisfies

Pley, > €) < (1 —my,)%, (31)

whered), is the number of over-samples at stepMoreover, there exists aim € N, that is independent from the
realization of the samples (i.e., it only depends on the properti®&X{fy) and noty;), so that ift < n thenm; =0
and ifk > n thenmy > 0.

Proof. If m; = 0, then (31) is the trivial statement that a probability of an event is boundéd GgnsiderA® with
smallest dimension that will satisfy condition (18) and let this dimensiom be dim(A%). The largest subspace
that the mapping/ can return is given by (24) and hence dikf) < cardT) < k. Therefore, ift < n, thenA§
necessarily fails (18) and hence Theorem 1 does not apply. Therefore, we can make only the trivial statement

Plep >€) <1=(1-0)% = (1—my)%.

If k < n, then (31) holds only for the trivial choice ef; = 0.
Supposé > n and define

Zr ={y eI : thereisapais > 1 andy? € A} such thaty + y” € I" and condition (18) fails

and let
pe=P(20) = [ ey,
Z
At iteration k, if p,, = 0, then condition (18) holds but for a set of zero probability, hence according to Theorem 1
er < €. The probability ofe;, > € given thatp,, = 0 is in fact zero

P(ex > €lpr =0) =0,

and therefore, (31) will be true for afly< m; < 1.

Supposey, > 0 and then consider the numberafer-samplesBy construction ofA?, none of theover-samples
belong toZ;. Therefore, we havé; number ofover-sampleall of which were randomly and independently selected
outside of the regioZ,.. The probability of such even {d — pj.)?, therefore,

P(eg > elpy > 0) < (1 — pg)™.
Thus, we can seleet, = py. 0

From Theorem 2 it follows that if for large enoughm,, are uniformly bounded away from zero, then the sampling
method has exponential convergence. This means that in the best case, Algorithm 1 could exhibit the fast convergence
of the collocation methods, without tlceirse of dimensionalityHowever, in generaln;, depends or¥;, and thus the
distribution of the sample§y; }*_, for eachk, and the corresponding;, is a random variable and it is possible for
the sequence ofi;, to tend to zero for very largk. We have to consider the probability that the error will exceed the
tolerancee with respect to the probability distribution of.

Theorem 3. (Distribution of the error)
Suppose there is a constavtsuch that for any arbitrary subsgtc RY

/ Q(y)p(y)dy‘ < [ oy

Then ifk > n ande, > e we have the following bounds, for the expected vdilje, — €] < M/(dx + 1), and the
varianceVarle, — €] < M?/(dx, + 1)2, with respect to the distribution of the number of samples.
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Proof. Letduy be the probability measure associated with the distributionoét stepk. Following our construction
in Theorem 2, the measugg of the set where condition (18) fails is at mest,, therefore, the error in the approx-
imation to the Qol is bounded by/m,. Furthermore, according to (31) the probabiliye; > €) is bounded by
(1 — my,)%. Therefore,

1
Eler — €] < M/ z(1 — )% dyy,.
0
The integrand is bounded and attains its maximum-at1/(d;, + 1) and hence we have the bound

dy
1— -1 _
( (dk+1)> < M
di+1 Tdp+1

E[ek—e} SM

In an analogous way we have that

2dy
Varley, — €] < M* /1 2?(1 — z)* dyy, — (Eley, — €])* < C? ( ~ @ )
- 0 B (di + 1) (dk + 1)

O

Remark 5. (Comparisons to Monte Carlo sampling)

Assume that we want to estimdf) to error tolerancee. The computational cost associated with classical Monte
Carlo sampling isO(1/€2) evaluations of)(y), and the estimate is independent from the dimension, regularity or
structure ofQ(y).

Our approach makes a couple of assumptions. Theorem 1 assumes continuous differentiability and throughout this
paper we assume the existence of a low dimensional active subspace (which may dependan,@ee Section 5.3),
while Monte Carlo sampling cannot take advantage of such structure. However, Algorithm 1, according to Theorem 3,
can identify a suitable approximation to the active subspace @itty ) samples of the gradient ¢j(y). Utilizing
the adjoint method for sensitivity analysis [2], the work needed to find the gradient is comparable to the work of
solving forQ(y), hence, the cost of finding the active subspace is comparalild2te) Monte Carlo samples.

The resulting low-dimensional projected problem can be attacked with a multitude of methods. Staying in the realm
of random sampling, we could use any of the methods from the QMC family that have well-established convergence
properties without the burden of additional assumptions. In low dimensions, the QMC method can find the projected
integral in approximatelyO(1/¢€) evaluations of)(y), which, combined with the earlier estimate for Algorithm 1,
leads a total cost a(3/¢€). Thus, for this particular class of reducible differentiable problems, Algorithm 1 combined
with QMC approach has total cost 6f(3/¢), which is much lower than the correspondifgl /e?) associated with
the classical Monte Carlo. In addition, SG and SC methods can exploit regularity of the projected problem and hence
achieve even faster convergence.

Remark 6. (Convergence of rational functions)
Here we consider a special case where= 0, Q(y) is a rational function of the components gfand the PDF
p(y) € LY (RY). According to Corollary 1 there is a unique pair &f* and A?, namelyA* = span{VQ(y)} and
AP = span{VQ(y)}+. Thus for each set of sample points we piék L {VQ;(y;}*_,,i.e. J(T) is given by(24).
For everyv € RY define

Sy ={y e RY : (VQ(y),v) # 0},

and considerx(y) = (VQ(y),v), which is in itself a rational function. A rational function is zero either everywhere
or on a set of measure zero, and thusfly) = 0 thenS, = (), otherwise the measure 6f, is equal tol. Therefore,
= [5, p(y)dy can attain only the values 6fand 1, and furthermore, it°(S,) = 0, thenv L VQ(y) for all
Y and hence e AI’ Conversely, i € AP, thenP(S,) = 1.
Consider arealization of Algorithm 1 and suppose that at &tepn = dim(A®) we haveA{, which is incomplete,
i.e., there is a nonzero vecter € A® N A}. By definition ofA®, we have that € span{VQ(y)}, however, since
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v € A%, we have that conditio(iL8) fails for all y € S,. Assuming the notation of Theorem 2, we note fhatt 7
and according to the same theorem, fob n, we have thatn; > P(S,) and sincev ¢ AP we have that

my > P(S,) = 1.

Usingmy = 1 in Eqg. (31) we conclude that the Algorithm 1 can identify the active subspace in a finite number of
steps, namely = dim(A%).

5. NUMERICAL EXAMPLES

In this section, we present three numerical examples to illustrate our numerical approach and to validate our theoretical
results. The first example considers a linear problem within the classical Karhuger-&etting. We demonstrate that

in the worst case scenario, the bound on the convergence rate predicted by Theorem 3 is indeed sharp. In the second
example, we consider an output of interest with a very low dimensional active subspace. Our method consistently
identifies that subspace with very few samples and hence we achieve convergence with numbesamples;

that is orders of magnitude less than what is required by Theorem 3. This demonstrates that for some problems, we
can find the active subspace long before we have a sample size that can give us sufficient confidence in the result.
However, in all cases, our method converges significantly faster then competing sampling approaches. Finally, we
apply our method to a one-dimensional physical reactor problem, described in Example 2, with a significantly large
number of cross-section uncertainties. We demonstrate that for moderate error tolerargcean find a very low
dimensional active subspace that preserves the dynamics of the output of interest. However, when we tighten the
tolerance, the size of the active subspace grows very fast, exhibiting how our gradient-based reduction technique can
only be successfully applied to the neutronics problem for moderate error tolerance.

5.1 Application to Classical Finite-Dimensional Karhunen-Lo éve Expansion

Consider the classical finite-dimensional Karhunermsproblem,

Qy) =y Sy, y e RY, andp(y) = ——+

where N = 100 and S € R'00x100 js a symmetric positive definite matrix. In order to illustrate the theoretical
results given by Theorem 3, we takdo be a random matrix of siz&0, specifically generated through the following
procedure:

1. Generate a matriR € R190x100 ‘where the elements @t are sampled from a standard Gaussian distribution
with zero mean and unit variance;

2. DefineS = RTR;
3. Scale the eigenvalues Sfwith use of a sequendss; } ¥, to enforce rapid eigenvalue decay.

Figure 2 shows the eigenvalue decay of the two test matrices that we use for the discussion below.
In order to validate the results form Theorem 3, we need to consider the expectation and variance of the error in
the projection associated with Algorithm 1 with respect to the distribution of the samples. To that end, we define

e(d):N— R,

wheree(d) is a possible realization of the error associated wittumber ofover-samplesObviously,e(d) is a random
variable for eacld and hence we are interested in the statistical expectifiqad) — €] and variancé’[e(d)]. In order
to compute the statistics, we execute the algorithm multiple times and gather samplgh fora manner consistent
with the Monte Carlo method.
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FIG. 2: Log plot of the eigenvalue decay for the two random test matrices. Thd fimigenvalues decay as =
exp(—1.727(i — 1)), while the remaining ones are setlto~* (left) and10~? (right). All eigenvalues are normalizes
so that\ . = 1.

Due to the structure of the problem, the exact expectatiadp(gf) can be computed by summing the eigenvalues
of S. Furthermore, suppose that we want to project the Qol onto a lower dimenaiihedspace, then we can take
any orthonormal basis fox® and if we arrange the basis into the columnd/othen the expectation of the projected
Qol is the sum of the eigenvalues 6’ SV. Finding the eigenstructure ofl&0 dimensional matrix is trivial, which
makes it feasible to compute a large number of realizations.

We apply Algorithm 1 using/(T') described in Section 4 Example 4 with cutaft= 10—, The error bound in
Theorem 3 uses, which is not equal t@, and thus we utilize the heuristic estimate

e ~ min(E[e(d))),

In every realization of Algorithm 1, we seek a reduced system of smallest dimension that will satisfy condition (28).
However, the probabilistic nature of the algorithm results in an active sub-space of variable size. In Table 1, we show
the statistics for the size of the reduced system.

According to Theorem 3, we should observe the relation

O2

Ele(d)] < e + d—fl, Vield) < (15

and Figs. 3 and 4 give the computed decay rate. In both cases, the error obeys the convergence bounds of Theorem 3.
Furthermore, we note that for one of our random matrices, the rate of conver@édge) is indeed sharp. Even

though Theorem 2 suggests the possibility of exponential convergence, in the general case, we cannot assume faster
linear rate.

TABLE 1: Size of the reduced system

Minimum | Maximum | Mean | Median
Example with faster eigenvalue decay 4 6 4.3 4
Example with slower eigenvalue decay 6 9 7.2 7
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FIG. 3: Log plot of E[e(d) — €] andV [e(d) — €] as a function ofi. The decay rate for the fir0 entries is—1.73
and—3.02.
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FIG. 4: Log plot of E[e(d) — €] andV'[e(d) — €] as a function ofi. The decay rate for the entrieghroughl1l is
—1.02 and—2.47, respectively.

5.2 Highly Reducible Random Parameter Problem

We present an example of a nonlinear problem with low dimensional active subspace and we consider the performance
of several common methods compared to our gradient-based reduction approagfx: )Lt a piecewise constant
approximation to an uncorrelated noise field, given by

N
n(y,z) = Zyilz-(x),

where eachy; is uniformly distributed inf—1, 1] and;(z) is the indicator function of the intervéli — 1)/N,i/N],
ie.,

Volume 5, Number 1, 2015



66 Stoyanov & Webster

Define the operata? : . (0, 1]) — L2 ([0, 1]) by

C(f) = Z (k71r)6 sin(kmc)/o sin(kws) f(s)ds,

k=1
and consider th&? inner productn,C(n));> = fol nC(n)dz such that the Qol is given by
Qy) = e~z (MCM)L2

Here we takeV = 1000, the random parameter domaingise ' = [—1, 1]V, and probability distribution ip(y) =
1/2™. The gradient can be computed by formal differentiation

9Q(y)
Jy;

:Q(y) <I“C(IZ)>L2 Yi 1= ]-727 7N7

and the goal is to compufg{Q] = [ Q(y)p(y)dy.

We compare the accuracy of different approaches for computing the expectation of the Qol, against the results of
a brute force random sampling witld® realizations. These include sensitivity analysis, Karhunegvkgrojection,
and our Algorithm 1. For the two projection schemes, if we project the Qol on a low-dimensional active subspace, we
could apply the collocation method, however, this is beyond the scope of our paper. Since we are only interested in
the error associated with the projection, we use Monte Carlo sampling to compute the expected value of both the full
order and projected Qol.

We can compute the gradieRt,Q(y) and hence we can utilize sensitivity analysis [2]. The nominal value for
the random vector i&[y] = 0 andQ(E[y]) = Q(0) = 1. The nominal gradient i¥,,Q(0) = 0 and therefore the
method yields the approximatidi@)] ~ 1 with variance of0. However, the quantity of interest in this example is
nonlinear and brute force Monte Carlo sampling gi##®] ~ 0.8832. Sensitivity analysis results in error of more
than13% and this single point method does not offer a strategy to improve this approximation.

The operatoC was purposely chosen to have very fast eigenvalue decay and the structty€)6§) suggests
that the active subspace will be associated with only the dominant eigensgg@ndftherefore it is low-dimensional.
However, we cannot rigorously apply the classical KL approach bec@lggis not a quadratic functional. Therefore,
the KL error bounds will not be valid. Indeed, if we &t be the space spanned by the first four dominant eigenvectors
of C, then the error predicted by KL is 1.0629 x 10~4, while the actual error is 5.2550 x 10~%. The KL approach
greatly underestimates the projection error. If weelet 10-* and apply Algorithm 1, then we can take dift) = 4
and achieve an approximation that is a full order of accuracy better than the linear KL approach (see Fig. 5).

Finally, we apply Algorithm 1 and compare the results to the error bound in Theorem 3. Figure 5 superimposes
four reduction tests with different values ef The reduction algorithm needs only a few samples to approxiftate
and reach the desired tolerance. According to Theorem 3, the expected value of the error is bounded(y 1)
and the standard deviation is less th@aw/ 1), thus our confidence in the reduced model is low. However, even
though the rate o (M 1) is a conservative estimate, the decay is faster than the brute force sampling approach.

5.3 Neutron Transport with Stochastic Cross Sections

Consider the PDE with stochastic cross sections described in Section 2 Example 2 with deterministic domain illus-
trated on Fig. 6. We consider two “fuel rods” and a “control rod” between them; the space between the rods is filled
with “coolant.” The fuel-rod regions have large fission cross-sections, the control rod region has a large capture cross
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FIG. 5: Convergence of Algorithm 1 vs the confidence estimate in Theorem 3. The reduction approach needs only
a few samples to find a suitable active subspace and reach the desired toteran6e® —#, thus the algorithm can
identify the active subspace long before we have a sufficient confidence in the computed projection. The dimension
of the active subspace is dih*) = 3 whene = 10~3, and din{A®) = 4 whene = 1074,

0 6.1 0.15 0.475 0.525 0.85 6.9 1

Fuel Rod Control Rod Fuel Rod
FIG. 6: Mockup reactor problem.

section, and the coolant interacts only weakly with the neutrons. As such, we define the indicator functions for each
of the three materials

1, z € fuel-rod | 1, =z e control-rod [ 1, =z € coolant
Iy(x) = { 0, o.w. Ip(x) = { 0, o.w. Iw(x) = { 0, o.w.

I

where the letter§/, B, andW are chosen to abbreviate the regions of the domain based on the common material used
for nuclear fuel (Uranium), control-rod (Boron), and coolant (Water). We model the uncertainty in the cross sections
as an additive, scaled, uncorrelated piecewise constant field

()'p(fE; (U) = 6-p(1') + Cp(l')yp(x§ (U) = Z 6-p,lIl(x) + Cp,lIl(x)yp(x; (.U), pE {8,07 f}v (32)
1e{U,B,W}

wherec,, ; are the nominal cross sections afg are the scaling factors. The numerical values that we used are
given in Table 2. Note that the actual cross-section values used are not the physical values associated with any real
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TABLE 2: Nominal values and noise scaling for the cross sections

Scatter Capture Fission
Nominal | Scaling | Nominal | Scaling | Nominal | Scaling
Fuel rod 1.0 +0.30 0.10 +0.05 7.0 +6.0
Control rod 1.0 +0.03 8.15 +4.00 0.0 +0.0
Coolant 0.1 +0.05 0.10 +0.05 0.0 +0.0

world materials, we are using artificially selected values with very large range, in order to make the problem more
challenging.

We focus on the reactor criticallity problem given by Eq. (6). The discretization is achieved by virtue of a finite
difference scheme: we takepoints in spacgr; }; C [0, 1] andm Clenshaw-Curtis [35] point§y; }7*, C [—1,1]
and we approximate the neutron flux Wz, 1) ~ P (z;, 1) = 1]){ The convection operator is discretized via an
up-winding scheme

Wl — W]
- <0
o T T — Ti &
Hj%(ﬂ% W) ~ 1])3 ) (33)
“ﬁ Hy >0

where we impose zero-Dirichlet boundary condition at the inflow, i.e., the reactor is shielded from external neutron
sources. We discretizp with the quadrature rule
1 m

e / e dHN*ZwﬂP i) % 3 D (34)

wherew; are the Clenshaw-Curtis weights. At each point of the domain, we represent the noise by three random
variables associated with the three types of cross section parameters. Each sample has a uniform distribution on the
canonical interval—1, 1]. Thus we havey € R3*" and (32) becomes

Gp(xi) = 6P($i) + Cp(xi)y;iya pe {Sv ) f}

The discretized version of (6) can be written as
, ‘ o 4
T} + (Sa(y) + Se(y) + Sy (W)W] = S:(y) D] + 187 (y) DY},

whereT is the discrete convection operator (3B),is the integral operator (345;(y), S.(y), S;(y) are diagonal
matrices with the cross sections, ane- 2.4. More generally, the eigenvalue problem can be expressed as

AP = AB, (35)

whereAd = T+ (Ss(y)+ Sc(y) + S (y)) — Ss(y)D, B =vS¢(y)D, and\ = 1/k. Recall that our goal is to estimate
the expected valuds[k(y)]

/ E(y)p(y)dy, (36)

wherep(y) is the uniform distribution on the hyper-cube= [—1, 1]3". For our examples, we use discretizations
n = 1000 andm = 14, which means that the integral (36) is300 dimensions.

In order to apply Algorithm 1, we need a way to approximaagdy,. Each of the operatoiS; (y), S.(y), Sr(y)
depend linearly on the uncertaingyand therefore can be easily differentiated. Howevéias a nonlinear dependence
ony. Supposeap andA satisfy Eq. (35) and to simplify notation define
0A 0B e A

aB’L - ) a 7 — 5 a}\l = 5
i’ Y b 0y 0y

0A; =
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then formally differentiating (35) we have

Let{ be the left generalized eigenvector 4f) = AB\ associated with, then we can multiply (37) byp? and
simplify

P? (0A; —AOB;) P = OAbT B,
which allows us to solve fodA,;.

We first take2000 samples ofV,k(y) and arrange them into the columns of a snapshot matrix, revealing the
decay of the singular values. Figure 7 shows the initial rapid decay, followed by a “plateau.” Therefore, for a moderate
choice ofe, we expect to find a low-dimensional active subspace, however, if we decrease the tolerance, the dimension
of A% should increase dramatically.

We apply the reduction algorithm with three different values of.e., 1072, 10~4, and10—4, and we give the
results in Table 3. In each case, we stopped the iteration when the nuntharefampleseached arountl000. For

Magnitude of the Singular Value

9 1 1 1

10° 10" 10° 10° 10

Index of the Singular Values

FIG. 7: Decay of the singular values of a set of sampleVWd(y). We observe a sharp decay until singular value
followed by a “plateau” until singular valugd. Hence, for moderate values of the tolerancge expect to identify
an active subspack® with low dimension; if we decrease we expect the dimensioh® to increase dramatically.

TABLE 3: Results from three realizations of Algorithm 1 for
three different values of. We use discretization parameters=
1000 andm = 14 resulting in a problem witl3000 dimensions
of uncertainty. All three realizations were terminated whkn

reachedl 000
€ dim(A%) Error
Test 1 10—2 2 1.6 x 1073
Test 2 10-3 4 3.9x 1074
Test 3 10~4 103 9.7 x 1076
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the largest tolerance, we can approximate the expected value to the desired tolerance by keepimgioofithe
3000 dimensions. If we decrease the tolerancao?, the size of the active subspace increases twowever, the
error in the projection decreases. As expected, when we decrease the tolerdnce toe size of the active subspace
increases td03 and even though the error in the projection is considerably loigrjs still prohibitively large to
allow for efficient application of any low dimensional integration scheme. A low-dimensiohahn be found only
for moderate values af.

A significant proportion of the dynamics &{y) is dominated by only a few modes. Therefore, we can approx-
imateE[k(y)] to less thanl% by projecting the Qol onto an active subspaceof no more than four dimensions.
Furthermore, Algorithm 1 is a reliable method for identifyififj at an approximately linear computational cost. How-
ever, if higher degree of accuracy is desired, then the additional dynamics that need to be identified are associated with
a much larger number of directions. For smglthe dimension of the active subspace increases dramatically, which
renders infeasible the application of sparse grids collocation or other fast convergent low-dimensional integration
techniques.

6. CONCLUSIONS

In this work, we presented a projection approach that utilizes the gradient, for forward uncertainty quantification
of high-dimensional problems. We use Monte Carlo sampling for the sensitivity of the output of interest (i.e., the
gradient at the sample point), we use this information to identify a low-dimensional active subspace and project the
output of interest in a manner similar to the classical Karhunegwveaxpansion. However, our method produces
results that are valid for problems with large range of uncertainty and hence more accurate than the single-point
sensitivity analysis. Moreover, unlike the classical Karhuneaveoexpansion, our error bounds are valid for highly
nonlinear problems. Finally, if the resulting projected problem is moderate-dimensional, we could apply conventional
guasi-Monte Carlo or stochastic collocation sampling techniques and benefit from their fast convergence rate, which
leads to total computational cost that is much lower than classical brute force Monte Carlo. The success of out method
is contingent upon the existence of a low-dimensialive subspace, which in turn depends on the structure of

the problem and the choice of toleranee Some problems can only be reduced for a moderate error tolerance.
Furthermore, in some cases, our error bounds can be overly conservative producing low confidence in an otherwise
accurate result. Nonetheless, this method can be successfully applied to PDE models with large number of uncertain
parameters, such as the criticality of the nuclear reactor with a large number of uncertain cross-sections.
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