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Molecular surfaces at atomic and subatomic scales are inherently ill-defined. In many computational chemistry prob-
lems, boundaries are better represented as volumetric regions than as discrete surfaces. Molecular structure of a system
at equilibrium is given by the self-consistent field, commonly interpreted as a scalar field of electron density. While
experimental measurements such as chemical bond and van der Waals radii do not spatially define the interface, they
can serve as useful indicators of chemical and inert interactions, respectively. Rather than using these radial values
to directly determine surface geometry, we use them to map an uncertainty interval in the electron density distribu-
tion, which then guides classification of volume data. This results in a new strategy for representing, analyzing, and
rendering molecular boundaries that is agnostic to the type of interaction.
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1. INTRODUCTION

Representation of surfaces in nanostructured materials data poses challenges for existing visualization techniques.
At nanometer and smaller scales, surfaces are defined by the interactions between atoms and their electronic bonds,
namely covalent and ionic bonds, and van der Waals forces. The extremal surface of an individual atom is commonly
defined by its van der Waals radius. Commonly, molecular surfaces are defined by the union of van der Waals spheres,
covered by a “probe” representing a diffusing atom or adjacent molecule. However, these models fail to accurately
describe surface behavior in numerous systems. For amorphous structures in molecular dynamics (MD) simulations,
van der Waals radii are too large and overestimate the surface considerably. However, ionic and covalent bonds are
too short, resulting in disjoint geometry.

In reality, molecular interfaces are dictated by atomic and molecular interactions, which in turn are governed by
multiple physical phenomena. No single first-principles model can accurately define all molecular interfaces, but dif-
ferent models are appropriate for applications with certain scales and given assumptions. Modern materials scientists
use density functional theory (DFT) to determine electronic bonding behavior, and molecular dynamics (MD) simu-
lations to study diffusion and other temperature-dependent phenomena. In most cases, computational chemists care
less about the underlying surface science than about the general structure and its characteristics (volume, surface area,
and mass). For simple analysis, relative statistics based on size and position of atoms are sufficient, without surface
classification. However, for visualization and validation, determining interface boundaries is ultimately desirable for
understanding computational data.
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Rather than seek a single discrete surface to represent a material interface, we note that the desired surface in most
cases exists between electronic bond and van der Waals radii, forming an uncertainty interval. We then visualize and
analyze the interface defined by this interval as a function of electronic structure, or charge density, as shown in Fig. 1.
Classification of the electron density expresses the molecular interface in ways that extrinsic molecular surfaces do
not. We use volume rendering to illustrate that molecular interfaces are not discrete boundaries, but phenomena that
vary with the type of interaction and are inherently difficult to quantify. In a sense, this approach is the reverse of
conventional Connolly molecular surfaces: rather than defining a molecular surface geometrically and color-coding
according to electron density, we define the surface as a level set of density and use experimentally-acquired geometric
radii to determine its boundaries. We employ this approach in rendering volume data from DFT computation, and
density fields approximated for larger MD data modeled after DFT simulation on a bulk compound.

2. RELATED WORK

Molecular surface visualization relies on abstractions of geometry defined by atomic position, rather than interpreta-
tion of electronic structure. Comprehensive overviews of early molecular surface work are provided by Connolly [1]
and O’Donnell [2]. The first and simplest molecular surface representation was the van der Waals surface or Corey-
Pauling-Koltun (CPK) model [3, 4], consisting of the union of van der Waals spheres. The solvent-accessible surfaces
of Richards [5] expand the van der Waals radius by an additional radius of a probe atom. The most common imple-
mentation of molecular surfaces employs the method of Connolly [6], defined by a probe atom rolling continuously
across the van der Waals surface. These surfaces are implemented in most molecular graphics packages [7–9] using
Varshney’s SURF [10] or MSMS [11] algorithms. Akkiraju and Edelsbrunner [12] noted the equivalence of molecular
surfaces and alpha shapes, and proposed a method for triangulating molecular surfaces. Other molecular surface for-
mulations serve geometric or illustrative purposes. Minimal molecular surfaces [13] choose a surface that minimizes
Gibbs free energy by minimizing mean curvature of the surface geometry. Other surface abstractions [14, 15] have
been used useful for visualization of larger molecules, particularly proteins, with subsurface structures.

Volumetric renderings of molecular data were first used in the illustrative animations of Blinn [16] using com-
pact polynomial basis functions. Direct volume rendering, as a general visualization modality, was introduced by
Levoy [17]. Electronic structure data from computational chemistry codes such as DFT are inherently volumetric
scalar fields. In general, the use of isosurfaces for representing electron density clouds is well accepted in the chem-
istry literature, though not as an outright replacement for molecular surfaces [18]. Goodsell et al. [19] demonstrated

FIG. 1: Material interface of thermally annealed amorphous carbon nanosphere structures generated from molecular
dynamics. The interface is derived from an approximate electron density field, using our classification of an interval
between van der Waals and chemical bond thresholds.
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direct volume rendering of charge density fields. Similar work explored volume rendering of electron density fromab
initio molecular dynamics [20]. Qiao et al. [21, 22] explore volume rendering of electron orbitals in quantum dot de-
vice simulations. Jang and Varretto [23] propose direct evaluation of wave functions for accurately volume rendering
molecular orbitals.

To our knowledge, no paper has considered uncertainty in the definition of a molecular surface with respect to
its electronic structure. Hu et al. [24] considered atomic movement in formulating and visualizing uncertainty of
molecular surfaces. Their approach is to model the movement of each atom as a distribution, and propagate that
uncertainty to the Connolly molecular surface model. Volume rendering of multifield data with associated uncertainty
was explored with 1D and 2D transfer functions [25]. Uncertainty-driven multidimensional classification of scalar
volume data has also been explored [26]. Uncertainty pertaining to isosurfaces with computed error has also been
visualized [27]. Point-based approaches allow for expression of spatial uncertainty in both polygonal and volumetric
data [28].

Volume approximations of charge density and other atomic properties are implemented for fixed radial distribu-
tions in VMD [7] (e.g., the VolMap tool). We improve on this by incorporating density distributions corresponding to
different interatomic bond lengths, from smaller-scale bulk DFT computation, into our model. While isosurfacing is
ubiquitous, direct volume rendering remains uncommon in molecular visualization tools [7–9]. In our work, we have
developed a prototype domain-specific visualization tool for classifying and visualizing molecular boundaries based
on electronic structure.

3. BACKGROUND

Molecular structure can be described in both intramolecular and intermolecular regions by continuous scalar fields of
electron density (or charge density). In quantum mechanics, electron density measures the probability of an electron
being present at a given spatial location [29]. Solving Schrödinger’s equation using a linear combination of atomic
orbitals (LCAOs) results in wave functions with radial and angular momentum for each electron [30].

ϕnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (1)

In the simplest case, the 1s orbital of the hydrogen atom hasYlm = 1 and a GaussianRnl = Ae−Br2
. For a

molecule with electronic bonds, bond geometry can be determined by minimizing the global energy of the system
through coefficients of all molecular orbitals (e.g.,A andB). This can be computed using either forward (variational
quantum Monte Carlo [31]) or inverse (density functional theory [32]) approaches. Molecular orbitals consist of the
sum of all atomic orbitals.

ψ(r, θ, φ) =
∑

N

ϕnlm(r, θ, φ) (2)

The wave-function amplitudeψ is complex valued, and the electronic charge densityρ is given as

ρ = eψ2 (3)

wheree is the electronic charge.
From computed wave-function coefficients, one can then plot charge density as a structured grid of real numbers,

and visualize or analyze this data directly. However, although this scalar field defines the overall structure of the
molecule, it does not define boundaries. Picking different isovalues of charge density can lead to different interpreta-
tions of molecular shape and size. For molecules expecting to donate or accept electrons, the interface of interest is
often given by the scalar field of the highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular
orbital (LUMO). However, these orbitals are still distributed over relatively wide (multi-angstrom) regions, and are
poorly suited for visualization as a single isosurface. Moreover, many interactions of interest do not involve inter-
change of electrons or formation of new bonds. Ideally, we would like a method of classifying charge density that
gives an accurate indication of the actual shape and size of the molecule, and is agnostic to the type of interaction.
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3.1 Atomic Radii

Conventional definitions of molecular surfaces rely on empirically measured radii of their component atoms from
x-ray crystallography. The radius of an atom depends highly on the molecule it resides in, and the interactions of
interest. Illustrated in Fig. 2, the most common atomic radii are

• Bond radiiof ionic, covalent or metallic bonds, determined directly from x-ray crystallography.

• van der Waals radius, or half the distance between the nuclei of two free atoms of the same type, which relates
to the London dispersion component of van der Waals forces.

The van der Waals radius itself can be determined in multiple ways, resulting in 5–10 pm error for most atoms [33].
This is typically small compared to the uncertainty associated with the type of interface interaction.

3.2 Molecular Surfaces

Volume rendering of electron density has gained relatively little traction, and there are few guidelines for choosing
isovalues of electron density. Common practice is to pick some minimal nonzero isovalue corresponding to an outer
isosurface. While adequate for visualization, the resulting isosurfaces vary greatly, and this approach is not suitable
for analysis.

Defining the surface of a molecule is difficult without knowledge of the “probe” interacting with it. As shown
in Fig. 2, the probe can be any type of free atom or molecule, as well as elementary particles (e.g., from a scanning
electron microscope). The simplest “CPK” molecular surface model consists of overlapping spheres [3, 4]. Generally,
van der Waals spheres form a convex hull of the molecule, but spheres consisting of ionic or covalent radii may be
disjoint. In the biomolecular community, problems such as protein docking have motivated the use of solvent-excluded
surfaces (SES) and solvent-accessible surfaces (SAS) [5, 6]. However, in the case of smaller particles and free ions, one
often desires representation of features within the van der Waals radius corresponding to chemical bonds. While SES
can represent boundaries inside the van der Waals radius, they have limited relation to physical molecular structure.
Another solution to forming continuous geometry is to model the surface implicitly using radial basis functions such
as those of Blinn [16]. However, arbitrary basis functions have similarly limited physical meaning.

4. MOLECULAR INTERFACE UNCERTAINTY CLASSIFICATION

To flexibly represent material interfaces without assuming a specific probe atom, we posit that many interactions of
interest in fact occurin betweeninner chemical bonds and outer van der Waals radii. Our main insight is that, for
any given type of chemical bond, empirically measured radii correspond to isovalues in the associated electron/charge
density distribution. In this way, the measured values of chemical bond radii and van der Waals radius define an
uncertainty interval over a charge density distribution. In turn, this can be used to classify wave function or electron
density fields.

free atoms bonded atoms

v an d er Waals surface covalent/ionic bonds
Ri chards solvent-accessible surface

probe atom
interface o!nterest

single atom

charge density field

FIG. 2: Atomic radii. Regions between chemical bond radii and van der Waals radius can be of interest in defining a
molecular interface.
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We make two simplifying assumptions in our treatment of charge density fields. We work with the real-valued
wave-function amplitudeψ′, defined as clamp negative values ofρ to zero and ignore complex values of the wave
functionψ. Since we assume we are operating on the same units as our computed DFT data set, we also ignore the
constante from Eq. (3). Then, from charge densityρ plotted in DFT, we compute real wave-function amplitude:

ψ′ = |ψ|√e =
√

ρ (4)

This derived quantityψ′ has units
√

e/Å
3
, and is uniquely defined by the charge densityρ. Usingψ′ is advanta-

geous for classification since it is positive-definite withψ′ > 0 even outside the van der Waals radius. Likeρ, ψ′(r)
(usually) varies monotonically withr outside the core region, and can be classified unambiguously. However, classi-
fying ψ′ is numerically cleaner; sinceρ is frequently small, transfer functions use quantized ranges (often 8-bit), and
DFT computations output spatially low-resolution volume data that is sensitive to interpolation. Lastly, as shown in
Section 4.3,ψ′ lends itself to radial basis function modeling of a positive-definite approximate scalar field,Ψ.

To perform our classification, we first determine the spatial interval

r = [r, r] (5)

wherer is the smallest measured chemical (covalent, ionic or metallic) radius, andr is the upper bound on measured
van der Waals radius. These are shown via the dotted lines bracketing range and domain in Fig. 3. Whenψ′ is
monotonic, this corresponds to

ψ′ = [ψ′(r),ψ′(r)] (6)

Then, classification of wave function amplitude inψ′ corresponds to the extents of the inner chemical bonds
and outer van der Waals interactions, i.e. the molecular interface. We use this classification in forming a transfer
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FIG. 3: Wave-function amplitudeψ′, as a function of radiusr in angstroms, in O-O and C-C bonds. The interval
between van der Waals and covalent radii defines as interval inψ′ that we use in classification. For the anisotropic
C-C orbitals, we show minimum and maximum distributions at angular coordinates ofθ = 0 andφ = 0, respectively,
and averageψ′ over allθ, φ. The blue and red isosurfaces correspond to the lower (outer) and upper (inner) extents
of this interval, respectively. Most interactions of interest, and thus the material interface, will occur in between.
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function, mapping scalar value to opacity and color. We then employ direct volume rendering to visualize our data.
The classification can equally be used to measure volume, surface area, and other geometric properties.

4.1 Anisotropic Orbitals

For distributions with primarily radial (s orbital) behavior such as the O-O example in Fig. 3, it suffices to plot wave-
function amplitude of free atoms along a single line (e.g.θ = φ = 0, or along theX axis through an atom).

However, for bonds with anisotropic behavior resulting fromp or d orbitals, the monotonicity property discussed
above does not hold. This is shown in the C-C bond in Fig. 3 (right), which has nonmonotonicψ′ (the θ = 0
distribution). Moreover,ψ′ exhibits low electron density at certain orientations, and significantly higher density at
others. Whenψ′ is nonmonotonic,ψ′(r) is no longer a bijection, resulting in ambiguous classification. Principally,
we are left with two choices:

• Integrate overθ, φ to find an average distribution, and classify using this (see Section 4.3)

• Classify the minimum and maximumψ′ corresponding to allθ, φ.

For DFT density data we recommend the second option, illustrated in the classification of Fig. 3 (bottom). Ex-
panding the uncertainty interval is a better choice when inner orbitals and individual bonds are of interest, but electron
density at these features may vary. This can be accomplished by plottingψ′ for all θ, φ (or a subset thereof). While
more ambiguous for inner orbitals, this choice has no adverse impact on classification of outer orbital geometry near
the van der Waals radius, which is a better indicator of chemical bond geometry.

We note that the C-C dimer example is shown for illustrating potentially nonmonotonic orbitals; it is a poor choice
for modeling the classification of larger carbon structures in this paper.

4.2 Varying Bond Profiles

Bonds between the same two atoms vary depending on their component orbitals. Even for atoms of the same type in
a homogeneous structure, bond length and electron density profile can change significantly. An example is the carbon
nanosphere shown in Fig. 4. While this structure consists mostly of C6 graphene chains withsp2 covalent bonds,
imperfections can exhibit different behavior, resulting in different bond lengths and consequently a range of different
distributions. Similarly to how we can build an intervalψ′ for a distribution of profiles for anisotropic molecular
orbitals, we can represent a distribution of multiple bond specimens of the same diatomic pair.

Chiefly, we are interested in density (and by extensionψ′) along bond lines and exterior regions of the structure.
For diatoms, this is trivial to determine based on minimum and maximum profiles. For systems with more than two
atoms, the maximal profile can exhibit interference from other atoms in the system, obscuring the lower classification
bound (the van der Waals radius) toward the tail. As illustrated in Fig. 4, this is also the case for the averageψ′

distribution. To accurately approximate the tail, one could, for example, solve for a least-squares fit of radial basis
functions that satisfy the average distribution, based on all or a subset of profiles in the system. A less costly approach
is to use the minimum profile as a lower bound and the average profile as an upper bound. Additional isovalues, such
as the minimum ofbondprofiles, can be of interest within this interval.

4.3 Approximate Wave-Function Fields

For molecular dynamics data, we are given atom geometry and sometimes electrostatic potential. However, the po-
tential field is not immediately useful in defining molecular interfaces, particularly near chemical bonds. In many
cases, MD data are too large for electron density to be computed directly using DFT methods. Thus, we propose
using density distributions from DFT to define atomic radial basis functions. Kernel density methods have been well
studied for this kind of problem [34], and indeed our proposed solution is similar to the one first used by Blinn [16].
Our contribution is the use of the average wave-function amplitude from bulk DFT as the basis for our kernel density
model, which allows for uncertainty classification with associated physical meaning.
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FIG. 4: Classification of a 732-atom carbon nanosphere from DFT computation in VASP. We show how the spatial
interval between covalent and van der Waals radii is mapped to an intervalψ′ of wave-function amplitude, which is
then mapped to isosurfaces or features in a transfer function.

Integratingψ′ over its angular components results in an electron distribution over radius. If we divide this by the
number of electronsN , we have an average distribution

Θ(r) =
1
N

∫
ψ′(r, θ, φ) dθ dφ (7)

This is shown by the solid black line in Fig. 3. In practice, density distribution varies with the chosen DFT approach
(plane wave or LCAO) and whether or not core electrons are fully simulated. Although density in the outer valence
regions is relatively low, these regions often have the greatest impact on molecular surface geometry. This must be
taken into account when normalizingΘ for the number of electrons.

The distribution is computed for each atom in the system, based on the types of bonds present in the molecule. For
example, in amorphous aluminum oxide, we would computeΨAl based on Al-Al and Al-O bonds, andΨO based on
Al-O and O-O bonds from DFT computation on a bulk compound. Then, for all atomsi with positionpi and~x ∈ Re3,

ri(~x) = |~x− ~pi|

Ψ(~x) =
∑

i

Θi[ri(~x)].

The kernel density model is a per-atom approximation of per-electron phenomena, and is not a replacement for
computation of orbitals from DFT. However, it suffices for large molecules with predictable, homogeneous structure.
As with ψ′ computed from DFT, we use our classification in both volume rendering and analysis.

5. IMPLEMENTATION

Our automated classification has been integrated into Nanovol, a GPU volume renderer designed for materials visual-
ization and analysis. Nanovol employs peak finding classification and distance-based sampling [35] to achieve roughly
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3× better performance than brute-force DVR for similar quality. It employs a uniform grid for space-skipping and
efficient raycasting of ball-and-stick geometry. It also provides higher-order interpolation options, which can be useful
in smoothing low-resolution volume data from DFT computation.

DFT computations on bulk compounds were performed in VASP [36]. Utilities for computing the radial distribu-
tions and generating the corresponding uncertainty interval and transfer function are written in C++, accessible either
as a standalone program or a library.

The proposed technique is a general approach for automatic classification (and if necessary, estimation) of electron
density fields for representing molecular structure and interface. To implement this more generally, a database could
store electron density distributions and distribution intervals for every atom and bond of interest. When considering a
new molecule, one would determine component atoms and use the appropriate distributions for uncertainty classifica-
tion and the per-atom kernel density model. So far, we have applied our technique to several DFT and MD molecular
structures, and we consider two in particular in Section 6. However, computation of such a distribution database for
every atom and bond of interest would require significant effort. Bulk DFT computation for two atoms is not gen-
erally costly, requiring several seconds for most diatomic examples. However, DFT for larger systems consisting of
thousands of atoms requires greater computational resources.

5.1 Transfer Functions

Given the intervalψ′, we can create a wide range of transfer functions that express the electron density volume with
respect to the chemical bond and van der Waals thresholds. In Figs. 3 and 4 we use a simple RGB warm-cold color
map, with peaks at each threshold to suggest “inner” and “outer” surfaces. While it is straightforward to automatically
generate such a transfer function, or indeed two isosurfaces, it is often useful to tweak the transfer function manually
to highlight desired phemonena. In Fig. 6, we use a low-opacity (purple-red) ramp to highlight the uncertainty region
between these thresholds, which peaks at an opaque green feature corresponding to ionic bond radius. In the lower-
right panel of Fig. 8, we choose a ramp to show only featuresoutsidetheψ′ interval, allowing us to visualize void
space.

6. RESULTS AND USE CASES

We apply our classification approach to electron density data generated from DFT, and to MD atomic data sets with
an approximate electron density volume generated with our kernel density model. Although the appropriate electron
density classification varies greatly with the application, we find that our physically based uncertainty classification
is an improvement overad hocclassification, and that properly classified volume rendering is a good modality for
molecular visualization.

In Nanovol, we achieve interactive performance (5–30 fps at 1 gigapixel resolution) when volume rendering
most data sets on an 8-core Intel 2.8 GHz Core i7 and an NVIDIA 580 GTX with 1.2 GB RAM. While volume
raycasting performs more slowly than rasterization-based approaches for small data, for large data such as the 740k
atom nanosphere our renderer outperforms rasterization of isosurface and ball-and-stick models in VMD [7] by up to
10×, with no required isosurface precomputation. Nonetheless, our classification approach can be generalized to any
volume rendering software, or employed in choosing isovalues corresponding to the minimum and maximum electron
densities in our uncertainty classification.

6.1 Density Functional Theory Computations

A straightforward application of our technique is classifying data directly from DFT computation. An example of this
is shown on the small carbon nanosphere in Fig. 4. While it is possible to volume renderρ directly using a linear ramp
(e.g., opacity directly proportional to charge density), occlusion often obscures geometric features inside the scalar
field. The main advantage of our semi-automatic approach over naive classification is that we have some physical
gauge of appropriate isovalues based on empirical measurements.
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While our approach works well for bulk compound computations, we note that it is less appropriate for classifi-
cation of DFT simulations involving complex chemical bonding. Nonetheless, even in these computations, a spatial
gauge relatingρ or ψ can be useful, given the appropriate distributions.

6.2 Molecular Dynamics: Nanobowls

While DFT computation is useful in examining the behavior of chemical bonds, molecular dynamics are used to
model larger-scale properties such as heat exchange, thermal annealing, diffusion, and dispersion. For MD data, an
electron density field must be approximated from its underlying atomic geometry, e.g., using the model described in
Section 4.3.

In preliminary analysis of the nanobowl data, all-electron charge density distributionsρ were computed for Al-
Al, Al-O, and O-O bonds in VASP [36]. We used these distributions ofρ to determine amplitudeψ′ = sqrtρ/e,
which we then used to model our approximate wave-function volumeΨ. Classification is performed in units ofρ.
The semilog plot of these distributions is shown in Fig. 5. Since Al2O3 is largely ionic, we used ionic bond radius
instead of covalent radius for the inner radius, and van der Waals for the outer radius as usual. We chose to perform
classification inρ-space. This is functionally the same as usingψ′, but with sharper transition between the interface
endpoints in the transfer function. We find that the uncertainty intervalΨ =

√
ρ is dominated by oxygen; to highlight

the contributions of aluminum we chose a red key color to classify density corresponding to that atom’s ionic radius.
By classifying only this interface, we can effectively segment the bowl from the rest of the structure. Examples of
these classifications are shown in Fig. 6.

In Fig. 7, we apply our uncertainty classification to simulation runs at four different temperatures. We use our
classification to measure volume inÅ3 corresponding to both lower and upper density thresholds (ionic bonds and van
der Waals). We compare this to raw positional analysis, which used a Gaussian-smoothed heightfield of interpolated
nucleus positions to estimate volume. Since volume statistics are relative, positional analysis is sufficient to determine
whether a structure is stable or not. However, our uncertainty classification is advantageous for visualization and
subsequent validation. With our uncertainty analysis, we note slightly more fluctuation in volume, though the same
overall trends remain. Since our volumetric model accounts for bond length, not simply the convex hull of atomic
nuclei, we expect it would correlate more strongly with experimental measurements. Overall, uncertainty classification
suggests physical upper and lower estimates for a theoretical molecular surface, which could be useful in correlating
with experimental measurements from electron microscopy.

6.3 Molecular Dynamics: Nanospheres

Our last application involves visualization of large amorphous carbon nanosphere structures from molecular dynamics.
Appearing as ordinary soot to the human eye, these materials are obtained through recycling of plastics and other

FIG. 5: Charge densityρ plotted as a function of radius for Al and O from bulk DFT computation, used to model
radial basis functionsψ′(r) of electron density in nanobowl MD data.
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FIG. 6: Classification of charge densityρ applied to our approximate electron density volumeψ′ =
√

ρ. We show
uncertainty in the material interface between ionic and van der Waals radii via a red-blue transition in these transfer
functions. This provides a simple mechanism for segmenting the bowl volume.
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FIG. 7: Top: Analysis from our classification, plotting bowl volume (Å3) over the simulation time (0–1550 ps) for
separate MD nanobowl runs at 1000, 1200, 1300, and 1350 K temperatures, shown in the four columns. Bottom rows
show visualizations at 260, 800, and 1500 ps, respectively, at the corresponding temperature of that column. Our
uncertainty classification defines upper and lower bounds for bowl volume, which can be useful in validation.
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organic compounds. At high temperature (2500 K) they undergo thermal annealing, forming folds and channels that
are well suited for anode material in lithium-ion batteries. This process is modeled in the LAMMPS MD code [37] for
various-size structures, the largest of which is 740,000 atoms. Structurally, the nanosphere is a mix of diamond (sp3)
and graphite (sp2) carbon configurations. Due to its large size, neither ball-and-stick nor Connolly surfaces are helpful
in visualizing the full nanosphere model. Scientists are primarily interested in the macromolecular folds and channel
structures, as distinct from standard diamond or graphite geometry. They are also interested in classifying space that
can potentially allow lithium-ion transport. Clearly, DFT simulation is prohibitively costly for structures of this size.

To visualize this structure, we employ our kernel density model using the minimum bond line wave-function distri-
bution shown in Fig. 4, followed by uncertainty classification. Then, our kernel density model at 4 voxels per angstrom
generates a moderately large (roughly10243) volume. Figures 1 and 8 show ball-and-stick and volume rendering of
this structure in Nanovol. In particular, our uncertainty classification allows for visualization of channels in between
covalent and van der Waals radii where lithium ions may be able to pass through. This void space could consist of
irregularities in graphitic C6 (sp2) geometry, the space in between graphite sheaths, or folding features resulting from
the annealing process. Volume classification using the model shown in Fig. 4 helps us flexibly understand the extents
of the material interface, and may aid in correlation with experimental results.

7. CONCLUSIONS

We have presented an uncertainty classification method for molecular interfaces based on electron density distributions
computed from bulk DFT or other first principles methods. This approach is useful in identifying interfaces based
on measured chemical bond and van der Waals radii, and in modeling continuous electron density fields from MD
computation.

FIG. 8: Amorphous carbon nanosphere structures resulting from thermal annealing. Uncertainty classification lets us
better explore material interfaces, including channels where lithium ions may diffuse.
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We are not the first to propose volume rendering of molecular data, or radial basis functions for approximation of
electron or charge density fields. However, our contributions aim to associate physical meaning with these techniques,
which remain largely unused by the molecular visualization community over two decades since they were first advo-
cated. While similar visualizations can easily be achieved without our semi-automated uncertainty classification, we
argue that it is scientifically useful to have this frame of reference when performing volume visualization.

In all, our approach argues for more widespread adoption of volume rendering modalities in molecular visualiza-
tion software, and engaged discourse between theoretical, experimental and computational chemists, and visualiza-
tion staff. Future work in this direction could better formalize approximation and classification of electron density for
molecular interfaces, as well as explore the impact of electrostatic potential on surface science.
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