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With the ever accelerating spread of artificial intelligence (Al) in virtually all disciplines of science
and engineering, the geotechnical studies and practices have also adopted these approaches for ex-
ploring and modeling of complex problems whose thorough understanding often falls beyond the
reach of analytical and even numerical methods. In the midst of the overwhelming appeal of Al
during recent years, however, there remains some overlooked fundamental questions regarding the
inherent ability of Al-based models to represent the constitutive behavior of materials in general,
and geomaterials in particular. This brief communications explores, from a theoretical point of view,
the question of if, and how, an Al-generated model can replace symbolic constitutive models for
materials and what would be the future of theoretical constitutive modeling in the age of AL
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1. INTRODUCTION

“[The] confusion of reduction as a tactic with reductionisas an ontological
stance is like saying that a square wave is really the sum airgelnumber of
sine waves because | can so represent it to an arbitrary degfaccuracy.

Richard Levins and Richard Lewontin,
the dialectical biologist, 1985.

It was Roy Amara, the futurist scientist, who famously séile tend to overestimate the effect
of a technology in the short run and underestimate the effeitte long run.” The statement is
arguably accurate for artificial intelligence (Al) and ifgpdication to many problems, including
among the materials sciences. History will indeed be arfaidge, but when looking at the body
of research and scientific perception of Al, we seem to batgtliat the transition between what
Amara meant by short run and long run. The overenthusiastiefb in Als are being gradually
adjusted by more realistic conceptions that outline theettealess impressive scope, as well as
the limitations and pitfalls of such approaches.
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In the realm of materials modeling, and geomechanics iniquéat, the Al methods, and
specifically, artificial neural networks (ANNSs), have beeidely used for problems that span
from simple multivariable calibration procedures to mdnigbf complex boundary value prob-
lems associated with ground excavation and slope stafiifibayedi et al., 2018). As expected,
the developed ANNs for such case-specific loading programsin, by nature, case specific
and are applicable only within the scope of the dataset faclwtine models are trained.

Nonetheless, such inherent case specificity and dependenttye training scope did not
prevent the percolation of ANN modeling approaches intanloee general domain of problems
such as constitutive modeling of materials. Most notalwythie early and mid 1990s, studies
by Ghaboussi and coworkers (Ghaboussi et al., 1991), aretogtuch as Ellis et al. (1995)
attempted, with some success, to replace the constitutodels of concrete and geomateri-
als with ANN models. Ever since, neural networks have beaptad for representing various
types of constitutive models, for instance, the elastiaitg plasticity of foams (Liang and Chan-
drashekhara, 2008; Settgast et al., 2019), the elastmithastf solids (Zhang and Mohr, 2020),
viscoplasticity (Furukawa and Yagawa, 1998; Xu et al., 2)28nd the multiscale response of
fiber-reinforced composites (Liu et al., 2020). Huang e{2020) explored the performance of
deep neural networks in representing a mechanical cotatitonodel, including the mutiscale
response of composites, by adopting boundary-value-pnotHEM simulations as the train-
ing data. The comparison provided therein with other forfifsiioction approximations clearly
demonstrated the strength of neural networks rooted im thgularization and generalization
capabilities. Moreover, in a noteworthy recent study, Xale{2020a) outlined an ANN-based
incremental framework adaptable to various classes ofmalteincluding hyperelastic, elasto-
plastic, and multiscale composites. In other studies edlé materials modeling, neural net-
works have been adopted as an offline upscaling tool to aatiaerepresentation of material
behavior linked with its microstructural attributes. Noteworks here include modeling of the
complex path-dependent multiscale plasticity (Mozaftasle 2019) and poroplasticity (Wang
and Sun, 2018).

From a broader historical perspective, such data-drivgmogehes to materials modeling
have been dubbed as the “fourth paradigm” in materials cheniaation proceeding experimen-
tal, analytical, and numerical methods (Agrawal and Changl2016). Recent decades have
witnessed the birth of numerous machine learning techsigegch exploring new horizons in
the capabilities of Al, and many of which have been adoptetebgarchers in various fields of
materials modeling. Studies such as Gao (2018), Bock e2@19), and Moayedi et al. (2018)
provide a thorough comparative review of these techniqudglaeir advantages and disadvan-
tages specific to engineering problems and geomechanicaticyar. The general verdict of
such reviews is that, in the field of materials modeling, Akbd models are capable of captur-
ing, to a good extent, the behavior of the target materidigested to generic loading protocols.
However, as in almost every field, no “one-size-fits-all” eggeh exists, and the modeling tech-
niques are often tailored for the specific problem at hancckBa al., 2019; Gao, 2018). Also,
not surprisingly, any attempt at generalization of Al-tthegodels is strictly contingent on the
availability of comprehensive good-quality training déBock et al., 2019; Peng et al., 2020;
Xu et al., 2020a; Zhang and Mohr, 2020). While this might séefne a practical shortcoming
at first glance, it quickly turns into a fundamental issueat@ng that the size of the ideal train-
ing dataset increases exponentially with the number of prent model parameters (Alwosheel
et al., 2018; Hestness et al., 2017).

Beyond such well-understood limitations, the applicapitif Al-based constitutive models
in capturing more complex loading conditions remains ybgtwerified due to more fundamental
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concerns (Mozaffar et al., 2019; Xu et al., 2020a). The dhifiee between the two above-
mentioned classes of problems (i.e., case-specific boyndhre problems vs. constitutive mod-
eling) is visualized for a pair of typical cases in Fig. 1. Bosimple boundary value problem
concerning the stability of a foundation, a generic ANN, etsesnatically depicted in Fig. 1(a),
can be trained for inputs such as the vertical load and tleedfithe footing, while the output
of the model is the factor of safety (FS) against failure [Hi(p)]. Given a proper set of train-
ing observations, the trained model can then be used toqgbrtbai stability of the next footing
whose properties lies within the range of data used foritrgirExpectedly, the model is only
applicable for the loading types for which it is trained fand any extension beyond the loading
conditions included in the training dataset requires aratguh training.

On the other hand, for the case of representing a consétutivdel, the ANN is trained
for a finite set of stress-strain responses associated ittlite number of loading paths, while
the final model is expected to be applicable for all the pdsdiading paths which are not
necessarily included in the training dataset, as illusttan Fig. 1(c).

Thus, a fundamental difference arises between the modilinggh ANN of case-specific
problems, such as the one in Fig. 1(b), as compared to ANNgseptation of a constitutive
model [see Fig. 1(c)]; whereas the former class embracesa#s specificity, the latter has an
implicit claim to generality that is the basis of every copiteal “model.” In other words, a
constitutive model differs from an ad-hoc fit precisely iatth claims to be applicable to loading
conditions for which it is not necessarily calibrateded.

F
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FIG. 1: (a) Structure of a generic three-layer neural network. @)mlary value problem of stability of a
simple foundation with width ofv bearing the vertical force af'. (c) Representing a constitutive model
via an ANN. The model is expected to predict the responseadihg paths that are not explicitly included
in the training dataset.
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Richard Levins, quoted at the beginning of this paper, wasrgnhe first to reflect upon
different strategies for general model building in his seahil 966 article where he outlined an
almost zero-sum tradeoff among precision, realism, andgdity of a model (Levins, 1966). A
physical model, in Levins’s opinion, is bound to make a camnise among these three basic
elements with one or two elements often being sacrificedviorfaf others. Levins’s arguments,
framed mainly for mathematical models in biology, was geddiy a mixture of approval and
criticism by its successors with the core idea of the existenf such a trade-off being still ar-
gued to date (Lewis and Belanger, 2015; Orzack, 2012). Nesfesss, Levins’s argument on the
role and the trade-off thereof precision, realism, and gitye becomes of particular relevance
when evaluating the efficacy of Al models to fully represemigal concepts such as constitutive
behavior.

In this paper we ponder, from a rather speculative point efvwythe inherent capability of,
and conditions required for, artificial intelligence and Wlin particular to represent a mechan-
ical constitutive model. The requirements regarding tlanclof generality are scrutinized in
the context of common and more elaborate incrementallyimeat constitutive models for ge-
omaterials. The idea of sufficient domain knowledge is ithiced that ensures the generality
of an Al-based model. The example of classical incremgntiaéar soil models is compared
with incrementally nonlinear models with the possibilitithe claim of generality only being
apparent for the former. The paper concludes with armcloaiternplation of the role of theoret-
ical constitutive modeling in the age of artificial inteligce. Despite the contemplative nature
of the study, the practical field of Al in geotechnical engineg can doubtlessly benefit from
such a bird’s eye overview of the theoretical basics in i@tato the state-of-the-art research
in Al. Through a more accurate charting of Al's capabilitiesnodeling of materials, such ex-
plorations can serve as a primary guideline for researdmlsengineers to better realise the
scope of practical possibilities in geotechnical modeliigle also preventing crucial pitfalls
associated with overextension of Al models without neaggsigecautions.

2. CLAIM OF GENERALITY

Explicit definitions for the concept of generality in the ¢ext of modeling, and the different
types that it assumes, have been offered in Weisberg (20@l4same quantitative scales based
on measure theory put forward in Lewis and Belanger (201&)skly put, generality of a model
refers to its capability of being applicable to a range ofiy@ms for which the model is not
directly trained or calibrated. For instance, a soil cdastie model that is calibrated using
drained triaxial test data is implicitly claiming, and igleed expected, to capture other common
loading conditions such as undrained or simple shear. Nuott@inding the comparative notion
adopted herein, the claim of generality, expressed or wikerimplied, is at the core of all
constitutive models inasmuch as a constitutive model feidint from an ad-hoc fit.

In the case of traditional symbolic constitutive model® ttaim of generality originates
from the theoretical formalism upon which the model is bad®dbeing established upon a
physically sound basis such as thermodynamic requirenmestintial functions, frame indiffer-
ence, and tensorial isotropy, symbolic constitutive medatdim that, once properly calibrated,
they are applicable to loading program beyond the one fockwtiiey are initially calibrated.

Artificial intelligence, on the other hand, embraces quiteolgheartedly the ad-hocery as-
sociated with fitting in the absence of a formalism. The nekwoeights in ANN are updated
and eventually optimized without any regard to the posditatmalism that the network might
or might not represent. Therefore the question arises ahemege the claim of generality for
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such models can originate. Indeed, it is well known that ANfda be regarded as universal
approximation functions which, in principle, are capabiestimating any multivariable, con-
tinuous function (Hartman et al., 1990; Hornik et al., 198@vertheless, doubt still remains as
to whether the accuracy required for the claim of generabity be achieved based on a finite set
of observations used for training.

Implied here is the fact that the claim of generality refemlydo the loading conditions and
does not extend to the material’'s property. A model, synebati Al-based, can only be inter-
polated within the range of material properties for whicis italibrated or trained. Considering
geomaterials, for instance, if a model is calibrated fonagirange of void ratios and stresses, it
cannot be expectealpriori to be applicable beyond that range. The generality in this cefers
to the fact that the model should be predictive of all comtiame of stress and strains applied at
the boundary.

2.1 Sufficient Domain Knowledge

The question of generality, as formulated herein, lies athtbart of the skepticism that propo-
nents of theoretical methods sometimes exhibit towarti@ati intelligence. However, we argue
that the claim of generality can be justified for artificialahigence based models of materials
through what we may call “sufficient domain knowledge,” orkSEr short. Simply put, the
idea of sufficient domain knowledge envisages a set of exyaeris which collectively describes
the behavior of material completely. Hence, it follows thay model (whether or not it is based
upon a formalism) that can be uniquely calibrated (or is essfully trained) to capture SDK,
will ineluctably be capable of predicting all the other lgagiconditions possible within the do-
main of the physics being studied. Worth noting is that therpretation of generality adopted
here is similar to what is dubbed psgeneralityby Weisberg (2004). Of course, it is crucial to
notice that the domain of the physics being concerned dtake size of SDK. For instance, the
SDK required for the mechanical behavior of materials isstdgrably smaller than that required
for, for instance, thermomechanical behaviors.

For the mechanical behavior of geomaterials, a plausibli€ Bbludes the stress-strain and
volumetric responses of the soil to tests such as drainedadichined triaxial and simple shear
experiments. Given the scope of the physics intended tojitere, the SDK may include static
and dynamic experiments, as well as loadings that capture mwicate properties such as the
noncoaxial loadings represented by hollow cylinder experits. It is important to notice that we
do not intend here to define the exact SDK but rather to exath@possibility of its existence.
What s included in SDK can then be determined through thimaleonsideration of the physics
domain or simply through trial and error.

Based on the above argument, the generality of an Al-basestitgive model is ensured
if a finite-size SDK is shown to exist, meaning that the conedrconstitutive behavior, in its
entirety, can be encapsulated into a finite set of obsemnatio

2.2 Constitutive Modeling, Reducibility, and Sufficient Do main Knowledge

We argue in this section that the existence of a symbolictdatise model, by and in itself,
implies the existence of a finite-size sufficient domain kizalge.

Envisaging soil sample as a system of interacting partiélesn a micromechanical perspec-
tive, the behavior of the assembly is governed by the posétial velocity of numerous particles
and different physics that govern their equally humerodsractions. Thus, for all practical
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purposes, the amount of information required to intergnetdollective behavior in terms of
particle-scale properties can be assumed to be infinite.Uohnthe same manner as discrete
elements method (DEM) simulations, the overall behaviothatsample (macroscopic) level
originates from equations of interactions and Newton’sslafvmotion solved algorithmically
for all the particles. While often taken for granted, it ist miven that the collective behavior
arising from such repetitive algorithms should be expliealia a so-called “covering law,” a.k.a
a constitutive model for the case of multiagent materiadsyvger, 2013). Indeed, the chaos the-
ory of dynamic systems argues that deterministic constéuhodels can only be formulated for
variables that do not exhibit sensitive dependence oralrdtinditions (Prokopenko and Einav,
2015; Reisch, 1991) and as a result, can be reduced toistdtid¢scriptions. For the case of
geomaterials, for instance, as much as constitutive madelde set up for averaged properties
such as stress-strain relationships, they cannot be eedencpredict characteristics such as lo-
cation and the shape of strain localization patterns (shgar bands), which depend sensitively
on local parameters.

Therefore the existence of a constitutive model impliesrdggucibility of the material’s
behavior with respect to the considered physics domainfattiethat the collective response of
millions of particles is assumed to be encapsulated in adtation involving a mere handful of
state and material variables is inevitably based upon sueduwctionism.

Coming back to the concept of sufficient domain knowledggfminimum size of SDK is
infinite, it entails that no finite set of parameters shouléble to describe the intended physical
behavior. Combined with the reducibility argument prodddove, it can then be deduced, via
proof by contradiction, that if a constitutive model exigte behavior is then reducible, which
also means that a finite-size SDK should exist. Hence iticdIthat

if a constitutive model is believed to exist, a proper Aldshmodel, ad hoc as it
is, should be able to represent the constitutive model iertgety.

There would indeed be processes (chaotic events, for icestéor which the Al-based meth-
ods cannot produce a reliable model. However, this is natatite of an inherent shortcoming
of Al but is rather due to the fact that a constitutive model@y does not exist.

3. EXAMPLE: INCREMENTALLY LINEAR AND NONLINEAR CONSTITUTI VE
MODELS FOR SOILS

The reduction of symbolic constitutive models to a finite aeinputs, i.e., sufficient domain
knowledge or SDK, is discussed here through two generadetasf models commonly used for
geomaterials—incrementally linear and incrementallylime@ar models.

Due to their inherent dissipative nature and path-depdrdsponse, soil constitutive mod-
els are often formulated in an incremental form whereby #te of stresses is related to that of
strains. Considering small strain ranges for simplicig tonstitutive relation takes the follow-
ing general form:

055 = Cijri€n, 1)
where the overdot denotes the time derivative (rateand ¢ are the second-order stress and
strain tensors, an@' is the fourth-order constitutive stiffness tensor. Eimst®tation is adopted
where repetition of indices indicates summation.

Given the path dependence of geomaterial response, thétatws stiffness tenso€' is
often a function of current stress and state of material, Ce= C(o,.5), with S being the
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set of state variables defining the current state of maseridle constitutive model is deemed
incrementally linear when the constitutive tenéddoes not depend on loading rate, in this case
¢, which means that the constitutive behavior can be undmistmd explored independently
from the applied loading.

The typical stress response of an incrementally linear iimda so-called strain probing
program is shown in Figs. 2(a)-2(c), where increments afrstrwith the same magnitude but
different ratios of principal values are applied [Figs.)Zad 2(b)], with the incremental stress
response as given in Fig. 2(c). While the applied strain @sdllls along a circle, the stress
response envelope traces a rotated ellipse whose chéstcsedepend on the particularities
of C. Figure 2(c) also shows how mapping of the strain probe dmtocbrresponding stress
response is represented by the fourth-order te@sand the tensorial product in Eq. (1).

For the case of incrementally linear models/indimensions, the constitutive behavior can
be fully captured if the response of the material is known dbileastD linearly indepen-
dent strain increments whose combination can span the sgfgoessible strain increments.
Given D linearly independent strain ratés(l), ceey é(D)} and their respective stress responses
{(')'(1), cey ('r(D)}, the response to any arbitrary strain rate can now be fourtdelaging the se-
lectedD strain rates as basis:

D D
055 = Cijriér = Cijpl Za(q)é,(g) = Za(")dgg), 2)
q=1 q=1

whereé? are theD linearly independent strain rates aind’ are the associated stress responses
for which c'r;?j = Cijmél,- Herea(?’s are coefficients describing the decomposition of strain
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FIG. 2: (a) Vertical and horizontal strain increments applied toetament of soil. (b) Strain probing
program; vertical and horizontal strain increments witfiedéent ratios are applied while the magnitude
of strain is kept constant. (c, d) Stress response to straibimg of incrementally linear and nonlinear
materials, respectively.
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tensors into their basis. Simple though it may seem, Eq. é®)ahstrates how, for the case of
incrementally linear models, the constitutive relatioraay particular state of material can be
encapsulated int@ separate observations. Hence the set of observa{ib(ﬁé ('7(‘1)} can be
said to form a sufficient domain knowledge, SDK, for the gigtress and material state. The
proof procedure can be readily extended to common elastipiaodels where two separate
tensorial zones, associated with loading and unloadirtgspate recognized.

It is important to notice that the relation in Eq. (2) couldt thave been obtained were it
not for the fact that the constitutive stiffne€sremains constant for different strain increments.
Moreover, the provided proof only shows the possibility dfrdte SDK that encapsulates the
constitutive behavior in a limited set of observations.sltcrucial to notice, in practice, that
the SDK does not represent a sufficient training set for airofarbitrary ANN model, which
possibly involves significantly more degrees of freedonmtten be optimized by such a limited
number of observations.

Returning to the types of geomechanical constitutive mgdels known that for granular
material such as sand, the constitutive behavior does depetoading direction, which leads
to a class of advanced models called incrementally nonijesastudied by Darve and cowork-
ers (Darve, 1990; Nicot and Darve, 2007). For such modelsdhestitutive stiffness depends on
the applied strain rate, or rather its direction, i.e.,

&
C’zC(U,S,m), )

where||g|| = (/&;;¢,; is the magnitude of strain increment and the terfii¢|| designates
the direction of applied strain rate. Crucially, the formaoistitutive tensor in Eq. (3), while
nonlinear does not violate the first-order homogeneity irequent of Eq. (1) with respect to
strain rates. The typical response of an incrementallyineat model to strain probing is given
in Fig. 2(d), where, unlike the incrementally linear casig[R(c)], the response stress envelope
no longer falls along an ellipse

It is obvious right away that the calculation in Eq. (2) noden holds since the constitutive
stiffnessC varies for each strain rate, and thus the question arisesvalsether a sufficient do-
main knowledge can, in principle, be realized for such ca®ee can still argue, rather loosely
we admit, that if a symbolic constitutive model is found tpeae the directional dependency of
C with a finite number of variables, then there would exist adinumber of observations based
on which the parameters of the symbolic model can be uniqgdelstified. The set of such ob-
servations may be a primary candidate for sufficient domaowkedge to provide an Al-based
model with the claim of generality. A more thorough thearatiinvestigation is nonetheless
called for here to convincingly prove the existence of suEiKSor incrementally nonlinear
models. One can imagine a proof alluding to series expardi@@i(o, S, £/||¢||) in terms of
¢/||€|| and attempting to achieve relations similar to those in B}j.4 detailed examination of
which is, however, beyond the scope of this article.

It is also worth mentioning that a symbolic constitutive rabduch as the one in Eq. (1),
still remains more general compared to Al-based modelsahithprovides the possibility of
rearranging stress and strain increments into new corgspldnse conjugate sets, similar to the

TNote that the foregoing discussion is only a crude and indetapresentation of incrementally nonlinear
models that nevertheless serves to convey the main pointaBbehaviors to those presented in Fig. 2(d)
can be produced by common incrementally bilinear elasstiglanodels that are often considered to be
incrementally linear within their so-called tensorial 2on
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boundary conditions applied for strain-controlled traxests where the incremental control pa-
rameters are vertical strains and horizontal stressesaiAeti ANN, on the other hand, does
not provide the possibility of such crossovers among inpdt@utput layers. Nevertheless, this
shortcoming is not crucial, mainly because ANN models angoat never used as standalone
entities and are instead oftentimes implemented into feléenent or other numerical solvers
which formulate the mechanical response as strain-drivecgsses and any imposed stress re-
quirement is achieved through proper iteration loops.

4. INCORPORATING FORMALISM INTO AI-BASED MODELS

As mentioned earlier, the size of a sufficient knowledge dondaes not reflect the amount
of observation required for training an Al-based model, alhis exactly due to its lack of a
formalism. In the absence afpriori structure, the number of model parameters to be optimized
in an Al-based model (e.g., neurons’ weight in the case of ANBIsignificantly larger than the
number of calibration parameters in an equivalent symbmbdel. As such, more observations
are naturally required for the Al-based model to achievegtdeast approach, unique trained
values.

The natural question then arises as to whether the Al-basdéirnan be endowed with some
of the characteristics that originate from having a forsali or, in other words, whether the
Al-model can be predisposed withpriori physical knowledge of the intended behavior, such
as frame indifference, isotropy, and first-order homoggngith respect to strain increments.
Taking the case of ANNSs, three different methods can be ageis in order to encode such
information into the Al-based model.

4.1 Artificial Expansion of Training Data

As a common approach already introduced in Lefik and Schrgf@#3), this method expands
the original training data in order to restrain, throughteriorce, the ANN to conform with the
intended criteria of the formalism. For instance, givenratidl set of training data, the isotropy
of the trained ANN can be imposed by conjoining the initidlwgh its rotated counterpart:

Initial training set Lsotropy, Expanded training set

(6@ 5@ @ @y @
{{o.59.6, ¢} QT "Q. 5, QT6PQ.Q"E " Q} },

where @ is a rotation tensor. The number of different rotations tocbasidered in order to
ensure the accuracy of a model is studied in Ling et al. (2016)
The same can be applied to ensure first-order homogeneltyrespect to strain/stress in-
crements, i.e., the training set can be extended to inclndardy scaled input data:
Initial training set — Expanded training set
{o@ g (-)-(Q), é(Q)} N {{0'(‘1), S, (')-(Q)’ é(Q)}, {o(D g M')-(q), (xé(‘J)}}’ ©)

with o« > 0 being a scaling factor. One of the the drawbacks of the dagenantation method
is the ensuing “black box” problem, leading to emergenceedindant weights in the neural
network (Worrall et al., 2017).
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4.2 Imposing Physics-Based Symmetries

Some properties pertaining to inherent symmetries of thmstitative models can be encoded
into ANNs by properly modifying the input and output traigidata. In particular, in order to
ensure isotropy and frame indifference, simply an invdrfarm of the training stress/strain
data can be used, which axiomatically secures isotropyKleefd Schrefler, 2003; Ling et al.,
2016). The increased accuracy and efficiency of the neutalank in this method, however,
comes at the expense of higher computational costs (Wetrall, 2017). A similar though more
involved method can be adopted for anisotropic materialssetbehavior can be described in
terms of more joint invariants of a stress, strain, and stiratanisotropy matrix through a proper
representation theorem. Incorporating such symmetriédNiNs via invariant representation is
discussed in detail in Cohen and Welling (2016) and Worttadl.g(2017) among others, mainly
in the context of image, video, and audio recognition. Havethe main ideas can be readily
translated to materials modeling applications. Along ailaimine, Xu et al. (2020a) showed
how symmetries pertaining to the positive definiteness afrestitutive model can be accounted
for in a neural network.

4.3 A Priori Structured ANNs

The last and more interesting method to encode formalismANN is to predispose the ANN
with a structure that resembles the symbolic formalismeHee quickly approach the edge of
barely charted territories in theoretical studies of nensworks. In principle, such a back-
ground provides insight regarding the behavior of systerhghvcan be coherently encoded
into ANNSs through a so-called “knowledge distilling” prase(Hinton et al., 2015; Tartakovsky
et al., 2018). Alternatively, the method of graph partitieural networks (Liao et al., 2018) can
be used to mimic a flow of intermediary variables similar te tepresented symbolic consti-
tutive model. A primitive scheme of such partitioned netkgocan look like Fig. 3, where the
ANN can be imagined as a collection of connected sub-netsvtidt are structured according to
the flow of information in a generic elastoplastic constiteimodel, with the training procedure
being carried out for the global network. The flow of inforimatamong the partitions can now
be predetermined and excluded from training procedurenfarésting instance can be found in
the recent work of Masi et al. (2020), where the ANN has beedipposed by an internal struc-
ture so as to ensure thermodynamic requirements. A mordatktssessment of such methods
and their applications involves technicalities that fadllieyond our current purview.

5. THE ROLE OF CONSTITUTIVE MODELING IN THE AGE OF Al *

If we accept the potency of Al in auspiciously representirggdonstitutive behavior of materials,
then why do we need our precious elegantly forged symboboritical models? Time and
again the question has been brought up in discussions wldagaes in the field of constitutive
modeling, and justifiably so since the same question is bemugpuntered in many other fields
as Als rapidly take over functions that have traditionakeh considered to be the sacred realm
of conceptual model building.

Here we delve back into Levins’s concept of trade-off amaomagigion, realism, and general-
ity. In this context, the current state of Al-based models éyes only for the precision; from an

iThis section is motivated by a conversation of the first authith Professor James Jenkins (Cornell
University) during a recent Lorentz Center meeting in Leidehe Netherlands.
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FIG. 3: (a) Structureof atypical elastoplasticonstitutivemodel.(b) StructuredANN whereeachcompo-
nentof the constitutivemodelis representetly a subnetwork.

Al point of view, aslong asthe predictionsarecorrect,we candisposewith the othertwo com-
ponentdor all practicalpurposesTheconcerns perhapsnoreaptly framedasthedichotomyof
comprehensioandcompetencgivenin Dennett (2009)Put inthis contextthe Al modelingis
depictedas“competencavithout comprehensiofwhich mirrors,to a goodextent,the sacrifice
of realismandgeneralityin favor of precisionasLevinsputsit.

It is no secrethat humarintelligencehaslost the battleon precisionfront to artificial intel-
ligence.Evenon the constitutivemodelingfront, the studiesshowthat ANN modelsnot only
outperformthe symbolicmodelsin precision,but they alsoexhibit morerobustnessswell as
an easierimplementationinto finite elementand othernumericalsolvers(Lefik and Schrefler,
2003;ShinandPande2000).0therblack-boxmodels—basetime seriesanalysisarealsoshown
to becapableof capturingthe detailsof geomateriabehaviorghatfall beyondthereachof con-
ventionalsymbolicconstitutivemodels(Small et al. 2013).

From sucha perspectivejt transpiresthat the future of theoreticalconstitutivemodeling
studieslies in producingcomprehensiomboutthe natureof mechanicabehaviorsratherthan
guantitativeresults.At the risk of being provenwrong over time, we believethat thosecon-
stitutive modelsaiming at explainingand understandinghe underlyingbehaviorsratherthan
producingmoreaccurateesultswith feebleformalismwould bethosethatretaintheirrelevance
overtime. Instance®f suchcomprehension-orientadodelsarethe micromechanical constitu-
tive modelsthatareoften predicatecuponmicrovariableghat cannotbe directly measureand
calibrated andassuch their quantitativepredictiveefficacyhasalwaysbeentheir Achilles heel
whencomparedagainstmoretraditionalmodels(Pouraghand Wan, 2018). However,the re-
markableexplanatorypowerof suchmicromechanicahpproacheprovidesa greatdeal ofwhat
canbedeemedasdeepeicomprehensionf the overallbehaviorof materials.

In the field of geomaterialsthe adventof discreteelementmethodsand their counterpart
multiscaletheorieshave,overthe pastfew decadesgreatlycontributedto betterunderstanding
of physicalprocessethatgovernthe stress-straimesponsef soilsby interconnectinghe many
macroscopidacetsof continuummechanicgo eachotherthroughtheir mutualmicroscopicun-
derpinnings.Suchcomprehension-orientetiodelsproduceknowledgethat can be employed,
atthe lowestlevel, in featureengineeringdf ANNSs, while at higherlevelsthey canprovidethe
a priori information necessaryor predesigninghe internal structureof ANNS. Interestingly,
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the reverse is also true, whereby ANNs can be employed terbatidge between micro- and
macroscale properties. Recent studies indeed demoristegietency of machine learning tech-
niques in pinpointing relevant macrolevel physics (Rudwlet2017), as well as recognizing
prominent microscopic variables (such as local time andtlescales) to be considered dur-
ing the homogenization and localization procedures (Mazadt al., 2019; Peng et al., 2020;
Vasilyeva et al., 2020; Wang and Sun, 2018).

In the end, it seems that the future of constitutive modeiliwglves a continuous dialogue
between the comprehension obtained from theoretical itotise modeling and the quantitative
competence of Als, for, as Levins put it, “understandingdsachieved by generality alone but
by a relation between the general and the particular” (LeVi966).

6. CONCLUSION

With the ever-increasing appeal of artificial intelligemoethods in the field of geotechnical
modeling, the current study undertakes the timely task pfaring the inherent potentials of
Al-based models, such as ANNSs, to represent a constitutdatetrin its entirety. Notwithstand-
ing their ad hoc nature, we investigated the possibility ¢fhAsed models to have a claim
of generality similar to that of symbolic models. By intramiug the concept of sufficient do-
main knowledge, we demonstrated that generality of an AkHaepresentation of a constitutive
model can indeed be achieved for incrementally linear msyeldth possible extensions sketched
for incrementally nonlinear models.

Finally, the quantitative competence of Al-based modetistrasted with the comprehen-
sion-oriented outcome of theoretical constitutive modelsereby better knowledge and more
accurate models are expected to form in a dialogue betweemwthcounterparts.
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