
 InternationalJournal for Uncertainty Quantification, 1 (3): 241–255 (2011)

GENERATING A MAXIMALLY SPACED SET OF BINS
TO FILL FOR HIGH-DIMENSIONAL SPACE-FILLING
LATIN HYPERCUBE SAMPLING

Keith R. Dalbey1 & George N. Karystinos2,∗

1Department of Optimization and Uncertainty Quantification, Sandia National Laboratories,
Albuquerque, New Mexico 87123, USA

2Department of Electronic and Computer Engineering, Technical University of Crete,
Kounoupidiana, Chania, 73100, Greece

Original Manuscript Submitted: 10/15/2010; Final Draft Received: 12/12/2010

In the literature, space-filling Latin hypercube sample designs typically are generated by optimizing some criteria such
as maximizing the minimum distance between points or minimizing discrepancy. However, such methods are time
consuming and frequently produce designs that are highly regular, which can bias results. A fast way to generate
irregular space-filling Latin hypercube sample designs is to randomly distribute the sample points to a pre-selected set
of well-spaced bins. Such designs are said to be ”binning optimal” and are shown to be irregular. Specifically, Fourier
analysis reveals regular patterns in the multi-dimensional spacing of points for the Sobol sequence but not for Binning
optimal symmetric Latin hypercube sampling. For M = 2r ≤ 8 dimensions and N = 2s ≥ 2M points, where r
and s are non-negative integers, simple patterns can be used to create a list of maximally spaced bins. Good Latin
hypercube sample designs for non-power of two dimensions can be generated by discarding excess dimensions. Since
the octants/bins containing the 2M end points of an ”orientation” (a rotated set of orthogonal axes) are maximally
spaced, the process of generating the list of octants simplifies to finding a list of maximally spaced orientations. Even
with this simplification, the ”patterns” for maximally spaced bins in M ≥ 16 dimensions are not so simple. In this
paper, we use group theory to generate 2M/(2M) disjoint orientations, and present an algorithm to sort these into
maximally spaced order. Conceptually, the procedure works for arbitrarily large numbers of dimensions. However,
memory requirements currently preclude even listing the 2M/(2M) orientation leaders for M ≥ 32 dimensions. In
anticipation of overcoming this obstacle, we outline a variant of the sorting algorithm with a low memory requirement
for use in M ≥ 32 dimensions.

KEY WORDS: uncertainty quantification, Monte Carlo, Latin hypercube sampling, space-filling, compu-
tational design, high-dimensional methods, regularity detection

1. INTRODUCTION

Models (i.e., simulators) are frequently used to make predictions about the performance of physical systems. However,
the correct input values for these models are often uncertain, and making accurate predictions of system behavior
requires that this uncertainty be propagated to the models’ output. Randomly drawing samples from the distributions of
uncertain inputs is one of the oldest [1], most robust, and universally applicable methods of uncertainty quantification
(UQ). Because the error in a sample mean computed from a Monte Carlo sampling (MCS) design withN points
scales asN−1/2, one million simulations will generally be needed for three significant figures of accuracy. When the
simulator is sufficiently expensive, running one million simulations is unfeasible and faster methods are required.

∗Correspondto George N. Karystinos, E-mail: karystinos@telecom.tuc.gr, URL: http://www.telecom.tuc.gr/∼karystinos/

2152–5080/11/$35.00 c© 2011 by Begell House, Inc. 241

 242 Dalbey & Karystinos

Some UQ methods, such as stochastic collocation (SC) [2], exploit smoothness in the model’s output by using a
set of samples to construct a fast surrogate for the computationally expensive simulator. Unfortunately, SC requires
that all members of a specific deterministic set of simulations successfully execute. Other methods, such as Kriging
and Bayesian emulation, have less dependence on the system’s smoothness and are more robust in that they do not
require a specific set of simulations. However, the quality of the sample design does affect the accuracy of the fitted
surface. High-quality random sample designs are also desirable because they are less susceptible to bias error than
deterministic sample designs.

Latin hypercube sampling (LHS) and jittered sampling (JS) both achieve better convergence than standard MCS by
using stratification to obtain a more uniform distribution of samples, although LHS and JS use different stratification
strategies. LHS is space filling in the one-dimensional projections but not in the fullM -dimensional space. JS is space
filling in the full M -dimensional space but not in the one-dimensional projections. When the input distributions are
non-uniform, an appropriate sample design can often be obtained by mapping (frequently through the cumulative
distribution functions) and/or weighting the sample points.

Greater accuracy with fewer samples can be achieved by combining both stratification strategies. Consequently,
generating space-filling Latin hypercubes has long been an active area of research [3–17]. Typically, space-filling
Latin hypercube sample designs are generated by optimizing some criteria. Examples of space-filling criteria in-
clude: maximizing the minimum (maximin) distance between points, minimizing the maximum (minimax) distance
between points, maximizing the entropy, minimizing the integrated mean square error (IMSE), minimizing the Audze-
Eglais potential energy, and minimizing discrepancy. Discrepancy is appealing as a criterion because of the “Koksma-
Hlawka-like inequality.” It states that the error in a sample mean is bounded above by the product of the sample
design’sLp discrepancy and the function’sLq variance, wherep−1 + q−1 = 1. However, generating space-filling
Latin hypercubes through optimization is time consuming and frequently produces sample designs that are highly
regular, which can bias results.

In a recent work, Dalbey and Karystinos [18] presented anO[N log(N)] fast algorithm to generate irregular
space-filling Latin hypercube sample designs. Their binning optimal symmetric Latin hypercube sampling (BOSLHS)
algorithm randomly distributes sample points to a set of well-spaced bins. The resulting sample designs had low cen-
tered and wrap-aroundL2 discrepancies (smaller is better), high coverage (larger is better), low correlations between
different input dimensions (smaller is better), and a low ”t” quality rating (smaller is better) when the designs are
considered to be tms-nets. The centeredL2 discrepancy of several sampling methods are plotted forM = 4 and
M = 8 dimensions in Fig. 1. BOSLHS has the lowest centeredL2 discrepancy of all random methods compared.

Let CM be theM -dimensional unit hypercube[0, 1]M , b ≥ 2 be a prime number, andP be defined as

P = ceil
(

logb (N)
M

)

Then,a design is “binning optimal” with respect to baseb if two conditions are met.

1. WhenCM is divided into a uniform grid of cube bins with volume vol= b−PM , no bin contains more than one
point.

2. WhenCM is divided into a uniform grid of cube bins with volume vol= b−(P−1)M (i.e., one generation larger),
every bin contains the same number of points.

Binning optimality ensures that in the limit of an infinite number of samples the sample design will include every
point in the input space. This means that binning optimal designs are space filling.

A sample design’s degree, if any, of binning non-optimality can be determined inO[N log(N)] +O(NM) oper-
ations. This is accomplished by computing a bin identifier, henceforth “id,” for each point as its index into the Morton
or “Z” space-filling curve, followed by quick sorting theZ-curve ids and tallying their frequency of occurrence. The
sortedZ-curve ids can also be used to detect regularity (i.e., cyclic patterns) in the multi-dimensional spacing of
sample points. Figures 2–4 show sample designs withM = 4 andN = 256 points and the corresponding amplitude
versus frequency plots (found by taking a fast Fourier transform of the difference of sequential sortedZ-curve ids)

International Journal for Uncertainty Quantification

 Maximally Spaced Bins for Space-Filling LHS 243

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N

C
D

2(X
)

Centered L2 Discrepancy M=4

Tensor Product
Monte Carlo
Jittered Sampling
CC rand LHS
BOSLHS
Sobol

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N

Centered L2 Discrepancy M=8

Tensor Product
Monte Carlo
Jittered Sampling
CC rand LHS
BOSLHS
Sobol

FIG. 1: CenteredL2 discrepancy (lower is better) as a function of number of points,N , in M = 4 andM = 8
dimensions for tensor product sampling, MCS, JS, cell-centered Latin hypercube sampling with randomly paired
dimensions, BOSLHS, and the Sobol sequence. Except for tensor product sampling and the Sobol sequence, which
are both completely deterministic, the lines plot the average discrepancy for 40 randomly generated designs.

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 2

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 3

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 4

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
2

x 3

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
2

x 4

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
3

x 4

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

frequency

am
pl

itu
de

Sobol Sequence M=4 N=256 CD
2
(X)=0.00997676

FIG. 2: Plots of all combinations of 2 out ofM = 4 dimensions and the amplitude versus frequency for a Sobol
sequence design withN = 256 points. Although it has low discrepancy, the Sobol sequence is highly regular, which
can bias results.

Volume 1, Number 3, 2011

 244 Dalbey & Karystinos

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 2

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 3

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 4

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
2

x 3

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
2

x 4

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
3

x 4

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

frequency

am
pl

itu
de

Monte Carlo Sampling M=4 N=256 CD
2
(X)=0.0447803

FIG. 3: Plots of all combinations of 2 out ofM = 4 dimensions and the amplitude versus frequency for a Monte Carlo
sample design withN = 256 points. The amplitude versus frequency plot is noisy because Monte Carlo sampling is
completely irregular.

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 2

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 3

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
1

x 4

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
2

x 3

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
2

x 4

 0 1/4 2/4 3/4 1
 0

1/4

2/4

3/4

 1

x
3

x 4

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

frequency

am
pl

itu
de

BOSLHS M=4 N=256 CD
2
(X)=0.0153393

FIG. 4: Plots of all combinations of 2 out ofM = 4 dimensions and the amplitude versus frequency for a BOSLHS
design withN = 256 points. BOSLHS is not visibly regular and the amplitude versus frequency plot confirms that
observation.

International Journal for Uncertainty Quantification

 Maximally Spaced Bins for Space-Filling LHS 245

for the Sobol sequence, MCS, and BOSLHS designs, respectively. The Sobol sequence is clearly regular; MCS and
BOSLHS are not.

Note that binning optimality is a rather weak sort of optimality. It verifies that there are the “right” number of
points in bins with an edge length ofb−P or larger. It does not verify that the subgrid-scale location of each point is
optimal in any sense. Said another way, binning optimality does not imply the optimal spacing of bins that contain
points for bins of edge lengthb−P or smaller. However,Z-curve ids can be used to engineer maximal spacing of bins
of edge length2−P into the LHS construction procedure.

ForM = 2r ≤ 8 dimensions andN = 2s ≥ 2M points, wherer ands are non-negative integers, simple patterns
can be used to create a list of maximally spaced bins. Good LHS designs for non-power of two dimensions can be
generated by discarding excess dimensions; the degree of binning non-optimality can be used to quickly compare the
various candidate combinations of dimensions to retain. Since the octants/bins containing the2M end points of an
“orientation” (defined as a rotated set of orthogonal axes) are maximally spaced, creating the list of octants simplifies
to finding a list of maximally spaced orientations. However, even with this simplification, the “patterns” for maximally
spaced bins inM ≥ 16 dimension are not so simple. In this paper, we present a procedure for generating a list of
octants in maximally spaced order for higher dimensions.

In Section 2, we use group theory to generate2M/(2M) disjoint orientations. In Section 3, we demonstrate how
to sort the list of orientations into maximally spaced order. Conceptually, our procedure works for an arbitrarily large
number of dimensions. However, memory requirements preclude even listing the2M/(2M) orientation leaders for
M ≥ 32 dimensions.

2. GENERATING THE LIST OF DISJOINT ORIENTATIONS

For anyM equal to a power of2, a Hadamard matrix̌HM is aM×M matrix with elements in{±1} and the property
that any row differs from any other row in exactlyM/2 positions; hence, its rows are orthogonal to each other. If, in
addition, the elements of the first row of the matrix are all equal to1, then it is a normalized Hadamard matrix.

Normalized Hadamard matrices can be iteratively constructed through Sylvester construction. ForM = 2, the
normalized Hadamard matrix is

Ȟ2 =
[
+1 +1
+1 −1

]
. (1)

Furthermore, from̌HM , we can generate the Hadamard matrixȞ2M according to the relation

Ȟ2M =
[
ȞM ȞM

ȞM −ȞM

]
. (2)

For example, forM = 4, we obtain

Ȟ4 =




+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


 . (3)

Let M be a power of2 andȞ the corresponding normalized Hadamard matrix. The corresponding orientation
contains2M octants (considering both endpoints of each axis) that are represented by the rows of matrix

Č =
[

Ȟ
−Ȟ

]
. (4)

Let č1, č2, . . . , č2M ∈ {±1}M be the2M rows ofČ. For example, forM = 4, the orientation matrix is

Volume 1, Number 3, 2011

 246 Dalbey & Karystinos

Č =




+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1
−1 −1 −1 −1
−1 +1 −1 +1
−1 −1 +1 +1
−1 +1 +1 −1




(5)

andč1, č2, . . ., č8 are the eight rows of̌C.

Our objective is to find the sequence of vectors{ěk}(2
M /2M)

k=1 , whereěk ∈ {±1}M , k = 1, 2, . . . , (2M/2M), such

that the corresponding sequence of orientation matrices
{
W̌(k)

}(2M /2M)

k=1
that are formed by

W̌(k) =




č1 ¯ ěk

č2 ¯ ěk

...
č2M ¯ ěk


 , k = 1, 2, . . . ,

2M

2M
, (6)

do not share common axes. In Eq. 6, operator¯ stands for the Hadamard (that is, entrywise) product. Note that, by
construction, no orientation matrix̌W(k), k = 1, 2, . . . , (2M/2M), contains identical rows.

To significantly reduce the complexity of our following algorithmic developments, it will be convenient to use
algebraic operations by mapping the alphabet{+1,−1} to the binary fieldF2, consisting of{0, 1} with modulo-2
addition and modulo-2 multiplication (0 + 0 = 1 + 1 = 0; 0 + 1 = 1; 0 · 0 = 1 · 0 = 0; 1 · 1 = 1).1 We use the
standard mapping

{±1} :
+1 ←→ 0
−1 ←→ 1 : F2. (7)

Under this mapping, the multiplication (of integers) over{±1} is equivalently represented as modulo-2 addition over
F2. For example, the multiplication[−1 + 1 + 1 + 1] ¯ [+1 − 1 − 1 + 1] = [−1 − 1 − 1 + 1] over{±1} is
represented as modulo-2addition[1 0 0 0] + [0 1 1 0] = [1 1 1 0] overF2.

Let H andC =
[
H
H

]
, whereH is the complement ofH, be the matrices with elements inF2 that correspond—

under the above mapping—to the normalized Hadamard matrixȞ and the corresponding orientation matrixČ, re-
spectively. We call them the normalized HadamardF2 matrix and the orientationF2 matrix, respectively. Observe that
from HM we can generateH2M according to the relation

H2M =
[
HM HM

HM HM

]
. (8)

In addition, letc1, c2, . . . , c2M ∈ FM
2 be the2M rows ofC. For example, forM = 4, we obtain the normalized

HadamardF2 matrix

H4 =




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


 (9)

and the corresponding orientationF2 matrix

1In simple words, a field is a set of elements in which we can perform addition, subtraction, multiplication, and division without
leaving the set. Addition and multiplication must satisfy the commutative, associative, and distributed laws.

International Journal for Uncertainty Quantification

 Maximally Spaced Bins for Space-Filling LHS 247

C =




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1




(10)

whose eight rows are denoted byc1, c2, . . ., c8.

Then, we can rewrite our objective as follows. Find the sequence of vectors{ek}(2
M /2M)

k=1 , whereek ∈ FM
2 ,

k = 1, 2, . . . , (2M/2M), such that the corresponding sequence of orientationF2 matrices
{
W(k)

}(2M /2M)

k=1
that are

formed (using modulo-2addition) by

W(k) =




c1 + ek

c2 + ek

...
c2M + ek


 , k = 1, 2, . . . ,

2M

2M
, (11)

do not share common axes. Note that, by construction, no orientationF2 matrix W(k), k = 1, 2, . . . , (2M/2M)
contains identical rows.

It can be proven that the set{c1, c2, . . . , c2M}, which consists of the row vectors ofC, forms a log(2M)-
dimensional subspace of the vector space of all the2M M -tuples over the fieldF2. In fact, the latter is true since
the modulo-2addition of any two rows ofC is also a row ofC, that is,ci + cj ∈ C, ∀ ci, cj ∈ C, as it can be easily
checked from the definition ofC. A method to partition the2M M -tuples into(2M/2M) orientationF2 matrices [or,

equivalently, to find the sequence of vectors{ek}(2
M /2M)

k=1] such that no orientation contains identical rows and no
pair of orientations share a common axis is described below. The partition is based on the fact that the rows ofC form
a log(2M)-dimensional subspace of the vector space of all the2M M -tuples over the fieldF2.

We utilize the procedure presented in [19]. First, we use the2M rows ofC to form a super row with the all-zero
vectorc1 (which we also calle1) as the first (leftmost) element. We choose a vector from the remaining2M − 2M
vectors inFM

2 , call it e2, and place it under the zero vectorc1. Next, we form a second super row by (modulo-2)
addinge2 to each vectorci in the first row and placing the sume2 + ci underci. After the second super row has been
completed, an unused vector from the remaining2M −4M M -tuples is chosen, callede3, and placed underc1. Then,
a third super row is formed by (modulo-2) addinge3 to each vectorci in the first super row and placinge3 + ci under
ci. This process is continued until all2M vectors inFM

2 have been used. The result is an array of super rows and super
columns, in the standard array of{c1, c2, . . . , c2M} as follows:




c1 = 0 c2 · · · ci · · · c2M

e2 e2 + c2 · · · e2 + ci · · · e2 + c2M

...
...

...
...

ek ek + c2 · · · ek + ci · · · ek + c2M

...
...

...
...

e(2M /2M) e(2M /2M) + c2 · · · e(2M /2M) + ci · · · e(2M /2M) + c2M




(12)

In the context of error-correction coding in digital communications, this array is called astandard arrayof the linear
block code{c1, c2, . . . , c2M}. More details about the construction of a standard array can be found in [19].

A standard array has the following important properties:

(i) The sum of any two vectors in the same super row is a row ofC (that is, a vector in the first super row).
Proof: Consider two vectors of super rowk, sayek + ci andek + cj . Then,(ek + ci) + (ek + cj) = ci + cj

Volume 1, Number 3, 2011

 248 Dalbey & Karystinos

which is a row inC because the rows ofC form alog(2M)-dimensional subspace of the vector space of all the
2M M -tuples over the fieldF2, as mentioned above.

(ii) No two vectors in the same super row are identical.
Proof: We suppose that two vectors in thekth super row are identical, sayek + ci = ek + cj with i 6= j. Then,
ci = cj ∈ C, which is impossible, sincei 6= j and, by construction, all rows ofC are distinct.

(iii) Every vector appears in one and only one super row.
Proof: It is apparent that every vector appears at least once, since every vector is used at least once during
the construction of the standard array. We have to show that no vector appears more than once. We begin by
supposing that a vector appears in both thekth super row and thelth super row withk < l. Then, due to the
construction of the standard array, this vector can be expressed asek + ci for somei and asel + cj for somej.
Hence,ek +ci = el +cj , which implies thatel = ek +(ci +cj). Becauseci, cj ∈ C and the rows ofC form a
log(2M)-dimensional subspace, it is implied thatci + cj is also a row ofC, saycm. Then,el = ek + cm. This
equality implies that vectorel belongs to thekth super row of the array. If the latter statement held true, thenel

should not have been used at the beginning of a lower super row. However,el is indeed used at the beginning
of the lth super row withl > k. Therefore, we arrive at a contradiction and conclude that no vector can appear
more than once in the array.

From Properties (ii) and (iii), we observe that there are2M/2M disjoint super rows in the standard array and that
each super row consists of2M distinct vectors. Hence, the matrix

W(k) =




ek
ek+c2

...
ek+c2M




which consists of the vectors in thekth super row of the standard array is thekth orientation we are looking for where,
by definition,ek is the corresponding vector we are looking for. For example, forM = 4, the standard array becomes

[
0000 0101 0011 0110 1111 1010 1100 1001
1000 1101 1011 1110 0111 0010 0100 0001

]

wheree1 = c1 = [0 0 0 0] ande2 = [1 0 0 0]. The two super rows of the array represent the two orientations we are
looking for.

In the context of error-correction coding in digital communications, the2M/2M super rows of the standard array
are called thecosetsof the linear block code{c1, c2, . . . , c2M} and the first vectorek of each coset is called acoset
leader (or coset representative). Apparently, any vector of a coset can be used as its leader. If another vector of a
coset becomes its leader, then the vectors that constitute the coset do not change but are only permuted. Particularly,
to minimize the probability of a channel decoding error, it can be proven that when the standard array is formed each
coset leader should be chosen to be a vector of minimum number of ones from the remaining available vectors. It is
implied that if coset leaders are chosen in this manner, then each coset leader has a minimum number of ones among
the vectors of the coset.

Because the role of the standard array is critical for channel decoding in digital communications, there have been
efficient implementations of the standard array of any linear block code. These implementations usually construct
the set of coset leaders in the above manner to minimize channel decoding error probability. An example of such an
implementation is MATLAB function syndtable, which accepts as input a parity-check matrix of the linear block code
and returns a matrix whose rows represent the coset leaders from the code’s standard array. The parity-check matrix
is easily constructed from the generator matrix of the linear block code which, in turn, consists of exactly as many
linearly independent elements of the code as its dimensionality.

In the context of our developments, the rowsc1, c2, . . . , c2M of the original orientationF2-matrix C form a
log(2M)-dimensional subspace (linear block code). We select exactlylog(2M) linearly independent rows fromC
to construct the generator matrix of the code and (through standard Gaussian-elimination-based techniques) form the

International Journal for Uncertainty Quantification

 Maximally Spaced Bins for Space-Filling LHS 249

corresponding parity-check matrix of the code. Then, we call MATLAB function syndtable with the input parity-check
matrix constructed above and obtain the2M/2M coset (or orientation) leaderse1 = 0, e2, . . ., e(2M /2M). These are
the vectors we are looking for. We convert the coset leaders into the{±1} alphabet, through the mapping in Eq. (7),
to obtaině1, ě2, . . ., ě(2M /2M). Finally, we construct the2M/2M orientation matrices through Eq. (6).

For example, forM = 4, from the eight rowsc1, c2, . . ., c8 of matrix C in Eq. (10), we selectlog(2M) = 3
linearly independent rows, namely,c8 = [1 0 0 1], c2 = [0 1 0 1], andc3 = [0 0 1 1], to form the generator

matrix
[

1 0 0 1
0 1 0 1
0 0 1 1

]
. From this, we form the parity-check matrix[1 1 1 1], which is fed to function syndtable that, in

turn, outputs matrix[0 0 0 0
1 0 0 0] whose rows are the2M/2M = 2 coset leaders we are looking for. We convert the coset

leaders into the{±1} alphabet, through the mapping in Eq. (7), to obtaině1 = [1 1 1 1] and ě2 = [−1 1 1 1]
and—finally—construct the corresponding two orientation matricesW̌(1) andW̌(2) through Eq. (6).

3. SORTING THE LIST OF ORIENTATIONS INTO MAXIMALLY SPACED ORDER

In order to sort the orientations into maximally spaced order, we first need a criterion to measure distance. For that
purpose, we define the dot product of two orientationsW̌(i) andW̌(j) to be

dot
(
W̌(i),W̌(j)

)
= max

〈
mod

{
abs

[
W̌(i)

(
W̌(j)

)T
]

,M

}〉
. (13)

Note that this definition says that the dot product of an orientation with itself is zero, so it is not actually an inner
product. We opted to use the informal name, “dot product,” instead of calling it a “semi-inner product,” since the
operator does not satisfy the Cauchy-Schwarz inequality.

The smaller the dot product of two orientations, the greater the Hamming distance between the two closest octants
in them. That minimum Hamming distance,δ

(
W̌(i),W̌(j)

)
, is given by

δ
(
W̌(i),W̌(j)

)
=

[
M − dot

(
W̌(i),W̌(j)

)]
/2.

In M = 16 dimensions, there are2M/(2M) = 2048 orientations. This means that there are potentially2048C2 =
2, 096, 128 orientation dot products that we need to compute, store, and use to sort the orientations. However, we can
reduce this to two groups of 523,776 dot products.

As indicated in Section 2, the orientation leaders forM = 4 dimensions are
[

+ + + +
– + + +

]
.

Likewise, forM = 8, the2M/(2M) = 16 orientation leaders are




+ + + + + + + +
– – + + + + + +
– + – + + + + +
– + + – + + + +
– + + + – + + +
– + + + + – + +
– + + + + + – +
– + + + + + + –







– + + + + + + +
+ – + + + + + +
+ + – + + + + +
+ + + – + + + +
+ + + + – + + +
+ + + + + – + +
+ + + + + + – +
+ + + + + + + –




.

Note that these can/have been divided into two groups. In the first group, all octants have an even number of negative
bit signs. In the second, all octants have an odd number of negative bit signs. The minimum Hamming distance
between nearest octants in the first and second groups is 1 bit sign. Within each group, the minimum Hamming
distance between any two octants is 2 bit signs.

Volume 1, Number 3, 2011

 250 Dalbey & Karystinos

For M = 16 dimensions, we can likewise separate the total of 2048 orientations into 1024 even and 1024 odd
orientations, and then calculate dot products for, and sort, the two groups independently. The even-odd separation is
our “step 1 sort.” The dot products for the even orientations after the step 1 sort are shown in Fig. 5. Within the group
of 1024 even (or odd) orientations the dot product can only have the following values{0, 4, 8, 12}; these correspond
to minimum Hamming distances of{8, 6, 4, 2} and the colors of{blue, aqua, yellowish-orange, and reddish-brown},
respectively. Recall that only the dot product of an orientation with itself is zero.

By analogy to theM = 8-dimensional case, we know that forM = 16 dimensions we can sort the 1024 ori-
entations into 16 subgroups of 64 orientations such that the minimum Hamming distance between subgroups is 2
and the minimum Hamming distance within a subgroup is 4. That is our “step 2 sort.” The dot products for the even
orientations after the step 2 sort are shown in Fig. 6. Note the introduction of blue + aqua + yellowish-orange (no
reddish-brown) 64× 64 “squares” along the diagonal.

For our “step 3 sort,” we sort each sub-group independently into eight sub-sub-groups of eight orientations such
that the minimum Hamming distance within a sub-sub-group is 6. The dot products for the even orientations after the
step 3 sort are shown in Fig. 7. Note the introduction of blue + aqua (no yellowish-orange or reddish-brown) 8× 8
squares along the diagonal.

Before sorting the even (or odd) orientations, we first define a symmetric2M/(4M) by 2M/(4M) dot product
matrixD such that

Di,j = dot
(
W̌(i),W̌(j)

)
= dot

(
W̌(j),W̌(i)

)
. (14)

This matrix has zeros on the diagonal.

3.1 The Step 2 Sort

Let d be the number of rows and columns ofD. For i = 1 → d, sort the rows of the matrixD into ascending order
based on the firsti columns ofD. The second column breaks ties in the first; the third column breaks ties in the first
and second, and so on. If all firsti columns of two rows tie, which of the two comes first is unimportant at this point.

FIG. 5: Plots of the dot products of even orientations after the step 1 sort forM = 16 dimensions. The left subplot
shows all 1024 even orientations; the right subplot shows only the first 256. The orientations are not in maximally
spaced order after the step 1 sort but there is a minimum Hamming distance of 2 (dot product=12, reddish brown)
between all even octants.

International Journal for Uncertainty Quantification

 Maximally Spaced Bins for Space-Filling LHS 251

FIG. 6: Plots of the dot products of even orientations after the step 2 sort forM = 16 dimensions. The left subplot
shows all 1024 even orientations; the right subplot shows only the first 128. The orientations are separated into sub-
groups with 64 members each. The minimum Hamming distance between octants within each subgroup is 4 bit signs
(dot product=8, yellowish orange). The first eight orientations in a subgroup are separated by a minimum Hamming
distance of 6 bit signs (dot product=4, aqua).

FIG. 7: Plots of the dot products of even orientations after the step 3 sort forM = 16 dimensions. The left subplot
shows all 1024 even orientations; the right subplot shows only the first 128. Each subgroup of 64 orientations are
separated into eight sub-sub-groups with eight members each. The minimum Hamming distance between octants
within each sub-sub-group is 6 bit signs (dot product=4, aqua).

Volume 1, Number 3, 2011

 252 Dalbey & Karystinos

That will be dealt with during the step 3 sort. Immediately apply the same reordering to the columns ofD. Let k be
the index of the last row for which all of the firsti columns are less than or equal to(3/4)M . If k <= i or k = d,
stop the loop overi and apply the step 3 sort to the firstk rows and columns ofD. Apply the same reordering of
rows/columns1 → k of D to columns/rowsk + 1 throughn of rows/columns1 → k of D. Then apply the step 2 sort
to the submatrix formed from rows and columnsk + 1 → d of D. Then apply the same reordering of rows/columns
k + 1 → d of D to columns/rowsk + 1 → n of row/columns1 → k of D. The step 2 sort can be implemented as a
recursive function.

If it were possible to compute and store the orientation leaders forM = 32 dimensions, the first time that the
above implementation of the step 2 sort would call itself is wheni = k = 220 = 1, 048, 576. The minimum Hamming
distance separating octants in this set would be 4 bit signs. It is unlikely that a UQ application would require more than
220 orientations (N= 226 samples), so a recursive call would not be needed. The problem of finding220 orientations
separated by a minimum Hamming distance of 4 bit signs can be solved in a memory efficient way by implementing
the step 2 sort as one column (of dot products) at a time procedure with a current tie-breaking-only sort. For each
column, all orientations that are less than 4 bit signs away, would be eliminated from future consideration. It should
also be possible, and faster (since a greater number of orientations would be eliminated from each column) to find
orientations separated by a minimum Hamming distance ofM/4 = 8 bit signs using the same one column at a time
implementation of the step 2 sort. Although the step 2 sort would be expensive, it is a one time cost since the result
could be stored for future reuse. All octants would be reachable by randomly generating a string of 32 bit signs and
applying it to all leaders in the stored step 2 sort.

3.2 The Step 3 Sort

For M = 16 dimensions, the step 3 sort is fed a copy of the dot products of one subgroup ofs = 64 orientations,
which were found by the step 2 sort. There are two defining characteristics of the subgroups. They are the only regions
where

1. Dot products less than 8 are found; and

2. Dot products greater than 8 are not found.

Dot products equal to 8 are found both inside and outside of the subgroups.
Note from Fig. 6 that the step 2 sort also finds the first sub-sub-group (dot product=4, minimum Hamming distance

of 6 bit-signs) in each sub-group. The step 3 sort determines how many orientations,n, are in each sub-sub-group from
the size of the first one. ForM = 16 dimensions this isn = 8.

The “step 3 sort” starts by setting the diagonal of thes× s matrix equal to 4 (which is the minimum nonzero dot
product between all even or all odd orientations). Then rowsi = n + 1 → s are sortedn times based on columns
1 → 2n so that the columns with higher indices are considered first and columns with successively lower indices
are used to break ties. After each row sort, the same reordering is applied to the columns. After thenth row sort, the
order of columns1 → 2n are held fixed, and rows2n + 1 → s are sortedn times in the same fashion. Then rows
3n + 1 → s are sorted, and so on. Note that onlys − 2n row sorts are needed since the first group ofn orientations
was handled by the step 2 sort and the last sub-sub-group is composed of the onlyn orientations remaining after the
intermediates/n− 2 sub-sub-groups have been found.

As with the step 2 sort, the step 3 sort can also be done in a more memory efficient way (which will be useful for
M ≥ 32 dimensions). This can be accomplished as follows.

Calculate the dot product of the first even/odd orientation with all other even/odd orientations found in the step 2
sort. Out of these, find the highest orientation indexk for which the the dot product is less than or equal to 4. Calculate
the dot products of orientationsi = 2 → k − 1 andj = i + 1 → k. From these determine the value ofn.

Discard previously calculated dot products. Calculate, and sort by, the dot products of orientationsn+2 → s with
orientationn + 1. Find the highest orientation indexk for which the dot product is less than or equal to 4. Calculate
the dot product of orientationsi = n + 2 → k− 1 andj = i + 1 → k. Consider the diagonal to be 4 instead of 0, and
sort rowsn + 1 → k n times with column2n being the most important and columns with successively lower indices
breaking ties. As before, you apply the same reordering to columnsn + 1 → k after each row sort.

International Journal for Uncertainty Quantification

 Maximally Spaced Bins for Space-Filling LHS 253

Discard previously calculated dot products. Calculate, and sort by, the dot products of orientations2n+2 → s with
orientation2n + 1. Find the highest orientation indexk for which the dot product is less than or equal to 4. Calculate
the dot product of orientationsi = 2n + 2 → k − 1 andj = i + 1 → k. Consider the diagonal to be 4 instead of 0,
and sort rows2n + 1 → k n times with column3n being the most important and columns with successively lower
indices breaking ties. As before, you apply the same reordering to columns2n + 1 → k after each row sort. And so
on.

4. APPLICATION TO BOSLHS AND RESULTS

Once the maximally spaced list of orientations has been found, extending the BOSLHS algorithm of Dalbey and
Karystinos [18] to higher dimensions is trivial. ForM = 16 dimensions, a randomly ordered, maximally spaced list
of bins to fill with points can be generated as follows:

1. Randomly permute the order of the groups of orientations.

2. Within each group, randomly permute the order of the subgroups of orientations.

3. Within each subgroup, randomly permute the order of the sub-sub-groups.

4. Within each sub-sub-group, randomly permute the order of the orientations.

5. Within each orientation, randomly permute the order of octants.

The average centered and wrap aroundL2 discrepancies of several sampling methods forM = 16 dimensions are
plotted in Fig. 8. The tested methods include tensor product sampling, MCS, JS, LHS, BOSLHS, and the Sobol
sequence. As in lower dimensions, BOSLHS was the random sampling method with the lowest discrepancy. The
Sobol sequence has lower discrepancy. However, as was shown in Fig. 2, the Sobol sequence is highly regular, which
can bias results.

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

N

C
D

2(X
)

Centered L2 Discrepancy M=16

Tensor Product
Monte Carlo
Jittered Sampling
CC rand LHS
BOSLHS
Sobol

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

N

W
D

2(X
)

Wrap Around L2 Discrepancy M=16

Tensor Product
Monte Carlo
Jittered Sampling
CC rand LHS
BOSLHS
Sobol

FIG. 8: Centered (left) and wrap around (right)L2 Discrepancies as a function of the number of pointsN in M = 16
dimensions for tensor product sampling, MCS, JS, cell-centered Latin hypercube sampling with randomly paired
dimensions, BOSLHS, and the Sobol sequence. Except for tensor product sampling and the Sobol sequence, which
are both completely deterministic, the lines plot the average discrepancy for 40 randomly generated designs.

Volume 1, Number 3, 2011

 254 Dalbey & Karystinos

5. CONCLUSIONS

In the literature, space-filling Latin hypercube sample designs typically are generated by optimizing some criteria
such as maximizing the minimum distance between points or minimizing discrepancy. However, such methods are
time consuming and frequently produce designs that are highly regular, which can bias results.

A fast way to generate irregular space-filling Latin hypercube sample designs is to randomly distribute the sample
points to a pre-selected set of well-spaced bins. Such designs are said to be “binning optimal” and are shown to be
irregular. Specifically, Fourier analysis revealed regular patterns in the multi-dimensional spacing of points for the
Sobol sequence but not for BOSLHS.

The ability to generate a list of well-spaced bins is a prerequisite for using this kind of sampling methodology.
Simple patterns can be used to create a list of maximally spaced bins forM = 2r ≤ 8 dimensions andN = 2s ≥ 2M
points, wherer ands are non-negative integers. The “patterns,” if they can be called that, for maximally spaced octants
in higher dimensions are not so simple.

In this paper, we presented a two-part procedure to generate a list of octants in maximally spaced order forM ≥ 16
dimensions. The first part of the procedure uses group theory to generate a disjoint set of “orientations,” where the term
orientation refers to a rotated set of orthogonal axes. The octants/bins containing the2M end points of an orientation
are maximally spaced from each other. The second part is an algorithm to sort the orientations into maximally spaced
order.

Conceptually, our procedure works for an arbitrarily large number of dimensions. However, memory requirements
currently preclude even listing the2M/(2M) orientation leaders forM ≥ 32 dimensions. In anticipation of overcom-
ing this obstacle, we also outlined a variant of the sorting algorithm with a low memory requirement for use in higher
dimensions.

The M = 16-dimensional BOSLHS designs generated using this list of maximally spaced octants have lower
average centered and wrap aroundL2 discrepancies than tensor product, Monte Carlo, jittered, and random cell cen-
tered Latin hypercube sample designs but higher discrepancy than the Sobol sequence. Discrepancy is a particularly
useful sample design quality metric because of the Koksma-Hlawka-like inequality. It states that the error in a sample
mean is bounded above by the product of the sample design’sLp discrepancy and the function’sLq variance, where
p−1 + q−1 = 1.

ACKNOWLEDGMENTS

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

REFERENCES

1. Hall, A., On an experimental determination of pi,Messenger Math., 2:113–114, 1873.

2. Xiu, D. and Hesthaven, J. S., High-order collocation methods for differential equations with random inputs,SIAM J. Sci.
Comput., 27(3):1118–1139, 2005.

3. Chiu, K., Shirley, P., and Wang, C., Multi-jittered sampling, inGraphics Gems Series, vol. IV, pp. 370–374, Academic, San
Diego, CA, 1994.

4. Park, J., Optimal Latin-hypercube designs for computer experiments,J. Stat. Plan. Infer., 39(1):95–111, 1994.

5. Morris, M. and Mitchell, T., Exploratory designs for computational experiments,J. Stat. Plan. Infer., 43(3):381–402, 1995.

6. Ye, K., Li, W., and Sudjianto, A., Algorithmic construction of optimal symmetric Latin hypercube designs,J. Stat. Plan. Infer.,
90(1):145–159, 2000.

7. Cioppa, T. M., Efficient nearly orthogonal and space-filling experimental designs for high-dimensional complex models, PhD
thesis, Naval Postgraduate School, September 2002.

8. Bates, S., Sienz, J., and Langley, D., Formulation of the audze-eglais uniform Latin hypercube design of experiments,Adv.
Eng. Software, 34(8):493–506, 2003.

International Journal for Uncertainty Quantification

 Maximally Spaced Bins for Space-Filling LHS 255

9. Bates, S., Sienz, J., and Toropov, V., Formulation of the optimal Latin hypercube design of experiments using a permutation
genetic algorithm,Proc. of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Palm Springs, CA, April 19–22, Paper AIAA-2004-2011, 2004.

10. Husslage, B., van Dam, E., and Hertog, D., Nested maximin Latin hypercube designs in two dimensions,CentER Discussion
Paper No. 2005-79, Tilburg University, Tilburg, The Netherlands, 2005.

11. Husslage, B., Rennen, G., van Dam, E., and Hertog, D., Space-filling Latin hypercube designs for computer experiments,
CentER Discussion Paper No. 2008-104, Tilburg University, Tilburg, The Netherlands, 2006.

12. Cioppa, T. and Lucas, T., Efficient nearly orthogonal and space-filling Latin hypercubes,Technometrics, 49(1):45–55, 2007.

13. van Dam, E., Husslage, B., Hertog, D., and Melissen, H., Maximin Latin hypercube designs in two dimensions,Oper. Res.,
55(1):158–169, 2007.

14. Joseph, V. and Hung, Y., Orthogonal-maximin Latin hypercube designs,Stat. Sin., 18(1):171–186, 2008.

15. van Dam, E., Rennen, G., and Husslage, B., Bounds for maximin Latin hypercube designs,Oper. Res., 57(3):595–608, 2009.

16. Grosso, A., Jamali, A., and Locatelli, M., Finding maximin Latin hypercube designs by iterated local search heuristics,Eur.
J. Oper. Res., 197(2):541–547, 2009.

17. Lin, C., Bingham, D., Sitter, R., and Tang, B., A new and flexible method for constructing designs for computer experiments,
Ann. Stat., 38(3):1460–1477, 2010.

18. Dalbey, K. R. and Karystinos, G. N., Fast generation of space-filling Latin Hypercube Sample designs, InProc. of the 13th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, September, AIAA-2010-9085, 2010.

19. Lin, S. and Costello, D. J. J.,Error Control Coding: Fundamentals and Applications, 2nd ed., Pearson Education, Upper
Saddle River, NJ, 2004.

Volume 1, Number 3, 2011

