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A major method for quantitative visualization of a scalar field is depiction of its isocontours. If the scalar field is
afflicted with uncertainties, uncertain counterparts to isocontours have to be extracted and depicted. We consider the
case where the input data is modeled as a discretized Gaussian field with spatial correlations. For this situation we
want to compute level-crossing probabilities that are associated to grid cells. To avoid the high computational cost of
Monte Carlo integrations and direction dependencies of raycasting methods, we formulate two approximations for these
probabilities that can be utilized during rendering by looking up precomputed univariate and bivariate distribution
functions. The first method, called maximum edge crossing probability, considers only pairwise correlations at a time.
The second method, called linked-pairs method, considers joint and conditional probabilities between vertices along
paths of a spanning tree over the n vertices of the grid cell; with each possible tree an n-dimensional approximate
distribution is associated; the choice of the distribution is guided by minimizing its Bhattacharyya distance to the
original distribution. We perform a quantitative and qualitative evaluation of the approximation errors on synthetic
data and show the utility of both approximations on the example of climate simulation data.
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1. INTRODUCTION

Data acquired by measurements or simulations are always affected by uncertainty. Important sources of uncertainty
include the measurement process, parameter selection, discretization and quantization of continuous quantities, as
well as numerical simulations with finite precision. Modeling and visualization techniques taking care of uncertainties
therefore are of interest for a variety of applications. In this paper we revisit the extraction of uncertain counterparts
to isocontours.

In previous work we have proposed a method to compute level-crossing probabilities for cells in Gaussian fields
defined on grids, considering the spatial correlation structure of the input data [1]. A disadvantage of this approach
is the high computational cost of the Monte Carlo (MC) integration. For the specific case of Gaussian fields with
exponential correlation functions, Pfaffelmoser et al. [2] presented a raycasting approach that computes first-crossing
probabilities along rays using lookup tables for fast evaluation. The results of this method depend on the viewing
direction.

Our aim is to improve the computation of local cellwise level-crossing probabilities that arise fromarbitrary
spatial correlations and that are independent of the viewing direction, i.e., are objective, in the sense that they are
independent of the observer. Since the input data are usually given on some grid, it is a natural choice to consider grid
cells and to compute cell-related probabilities.

The numerical computation of high-dimensional integrals in general is expensive, both with deterministic and MC
methods. There are two ways to deal with this problem: Either utilize specific properties of the problem to facilitate
the computation, or find good and fast approximations of the integrals. Here we consider the latter approach: We
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compute approximate univariate and bivariate distribution functions that can be evaluated in the rendering step using
table lookups.

We will consider two possibilities for approximating the probabilities. Themaximum edge crossing methodcon-
siders pairwise correlations between two random variables at a time. Thelinked-pairs methoditeratively traverses the
vertices of a grid cell and considers joint and conditional probabilities between subsequent vertices. This algorithm in-
duces ann-dimensional approximate distribution, wheren is the number of vertices. Depending on the order in which
the vertices are traversed, different approximate probability distributions occur; an optimal distribution is selected by
optimizing the Bhattacharyya distance to the original distribution.

The main contributions of this paper are

• a formulation of two approximations for cellwise level-crossing probabilities in discretized Gaussian fields with
arbitrary spatial correlations,

• an optimization strategy for approximate probability distributions based on the Bhattacharyya distance,

• and a quantitative and qualitative evaluation of the approximation errors for synthetic data and climate simula-
tion results.

2. RELATED WORK

Johnson and Sanderson [3] considered the representation of uncertainty to be a major challenge in visualization
research. An earlier introduction to uncertainty visualization describing various aspects of uncertainty propagation
and several visualization methods was presented by Pang et al. [4].

In several different areas of visualization, research methods to represent data uncertainty have been proposed.
The visualization of ensemble data was addressed by Potter et al. [5] and Sanyal et al. [6]. Both papers present
visualization tools for weather forecasts and simulated climate data. Sanyal et al. also conducted an evaluation of
their tool’s efficiency. Luo et al. [7] described methods to manipulate ensemble data, assess uncertainty propagation,
and adapt specific visualization methods. Methods to display uncertain data using volume rendering include special
transfer functions that take mean values and variances into account [8], interactive probabilistic classification [9], and
animation of probabilistic transfer functions [10]. Visualizations of uncertain vector field and flow data can be created
using specific texture mapping approaches [11] or the application of an extension of vector field topology [12].

The uncertainty of the positions and shapes of surfaces was addressed in several publications. Pauly et al. [13]
quantified the uncertainty of surface reconstructions from point cloud data using likelihood and confidence maps.
Grigoryan and Rheingans [14] indicated the positional uncertainty of surfaces using point primitives that are displaced
in the normal direction of the mean surfaces. Zehner et al. [15] proposed to combine isosurfaces with additional
geometry to indicate the positional uncertainty in geological data and show spatial confidence intervals.

Allendes Osorio and Brodlie [16] modeled the uncertainty of scalar fields using random fields. To display spatial
distributions of uncertain isolines they computed the probability that the scalar value at a given position is contained in
an interval between an isovalue and a second user-defined parameter. Pöthkow and Hege [17] estimated the sensitivity
of isocontours using the numerical condition, displayed it using color mapping, and plotted average condition numbers
to aid the selection of isovalues corresponding to robust/insensitive surfaces. As a model for uncertain scalar fields
they used discrete random fields and proposed an interpolation scheme. To compute spatial distributions of uncertain
isocontours and isosurfaces they defined local measures for each point in a continuous domain and displayed the
results by volume rendering that was combined with crisp mean surfaces.

One drawback of the above approaches was that spatial correlations in the random fields were not considered. Both
Pfaffelmoser et al. [2] and P̈othkow et al. [1] proposed methods to incorporate covariances in Gaussian random fields
to compute more accurate level-crossing probabilities. In [2] a formulation of first-crossing probabilities in fields with
exponential correlation functions was presented which uses lookup tables for fast evaluation. It was employed in a
real-time volume raycasting algorithm and combined with specific surface rendering and coloring methods. In [1]
covariances were considered for the computation of level-crossings in each cell of a discretized random field. The
probabilities were estimated using MC integration.
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3. MATHEMATICAL MODEL

We consider a scalar fieldg : M → R on a compact domainM ⊂ Rd that has been discretely sampled on nodes
{x}i∈I of a grid with data values{Y }i∈I , whereI = {1, . . . , l} labels the sample points. To refer to grid entities
such as nodes, edges, faces, and volume cells, we use the termη-cell: a 0-cell is avertex, a1-cell is anedge, a2-cell
is apolygon, a3-cell is apolyhedron, and so on. The sampling grid is ad-dimensional grid composed ofd-cells that
discretizes ad-dimensional geometric domain inRd.

3.1 Basic Probabilistic Setting

We assume that the data values{Y }i∈I at the sampling points{x}i∈I are random variables with probability density
distributionsfi, meansµi = E(Yi), finite variancesσ2

i = E(Yi − µi)2, and covariancesCov(Yi, Yj) = E[(Yi −
µi)(Yj − µj)] for all i, j ∈ I.

Given N realizations of the random field{y}j=1,...N
i∈I , i.e., a sample of random fields, the sample means (or

empirical means)̂µi = 1
N

∑N
k=1 yk

i and the entries of the sample covariance matrix̂Covi,j = 1
N−1

∑N
k=1(y

k
i −

µ̂i)(yk
j − µ̂j) for all i, j ∈ I are unbiased estimates of the meansE(Yi) and covariancesCov(Yi, Yj), respectively.

3.2 Joint Distribution Functions

For a vectorY of n random variables{Y }i∈I the variances and covariances can be represented by a positive-
semidefinite covariance matrix

Σ = (Cov(Yi, Yj))1≤i,j≤n.

In caseY conforms to a multivariate Gaussian distributionY ∼ Nn(µ, Σ) with µ = [E(Y1),E(Y2), . . . , E(Yn)]T ,
it can be uniquely described by a joint probability density function

fY(y) =
1

(2π)n/2 det(Σ)1/2
exp

[
− 1

2 (y − µ)T Σ−1(y − µ)
]

with y ∈ Rn.

3.3 Level-Crossing Probabilities

Any realization{y}i∈I of Y defines a grid function. For any grid function imagine an extension to aC0 function
g{y} that is defined in the continuous domain and that interpolates between the sample points{xi}i∈I such that in
eachη–cell c (η ≤ d) the extremal values are taken at the vertices ofc. Examples for such interpolations are linear
interpolation for simplicial cells andη–linear interpolation forη–dimensional cubical cells.

Let Ĩ ∈ I be the set of indices of the vertices of cellc. Then cellc crosses theϑ-level of g{y} if and only if in the
set of differences(yi− ϑ)i∈Ĩ both signs occur. Equivalently, cellc does not cross theϑ-level ofg{y}, if and only if all
differences(yi − ϑ)i∈Ĩ have the same sign.

We want to compute the probability that aη-cell c of thed-dimensional sample grid (η ≤ d) crosses theϑ-level
of interpolated realizations of the random variables{Y }i∈I . We call this theϑ-level-crossing probabilityof cell c and
denote it byPc(ϑ-crossing). In order to compute this probability we have to integrate the joint density function of the
random variables{Y }i∈Ĩ over sets{yi ∈ R | yi ≤ ϑ} and{yj ∈ R | yj ≥ ϑ} using integrals over|Ĩ|-dimensional
marginal density functions.

In general, marginalizing out the other variables{Y }i/∈Ĩ can be difficult. However, for multivariate Gaussian
distributions we can utilize the nice property that marginalized distributions are again Gaussian distributions with the
“right” means and covariances, i.e., the rows and columns ofµ andΣ that correspond to{Y }i/∈Ĩ are deleted to obtain
the local marginal distribution of{Y }i∈Ĩ ; see [1].

As an alternative to the direct formulation we can also compute the probability

Pc(ϑ-crossing) = 1− Pc(ϑ-noncrossing) , (1)
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which in cells of dimension greater than 1 is less expensive to calculate.
The general procedure to compute such probabilities can be applied to any type of mesh entity, for example, to

arbitrary polyhedral cells in grids of arbitrary dimensiond. In the following we consider exemplarily edges of such
grids. Obviously the procedure can be extended toη-simplices or arbitraryη-polyhedra withη ≤ d.

3.3.1 Edges

For a scalar field in one or more dimensions we consider two random variablesY1, Y2 that are associated with
adjacent grid pointsx1, x2. Consider the random vectorY = [Y1, Y2] where the joint probability distribution is
described by a bivariate Gaussian probability density function (PDF)fY(y1, y2) with y1, y2 ∈ R. We define the
eventsY +

i = (Yi > ϑ) andY −
i = (Yi ≤ ϑ). Theϑ-level-crossing probability is given by

Pc(ϑ-crossing) = P(Y −
1 ∩ Y +

2 ) + P(Y +
1 ∩ Y −

2 )

=
∫

y1≤ϑ

dy1

∫

y2>ϑ

dy2 fY(y1, y2) +
∫

y1>ϑ

dy1

∫

y2≤ϑ

dy2 fY(y1, y2). (2)

Alternatively:

Pc(ϑ-non-crossing) = P(Y −
1 ∩ Y −

2 ) + P(Y +
1 ∩ Y +

2 )

=
∫

y1≤ϑ

dy1

∫

y2≤ϑ

dy2 fY(y1, y2) +
∫

y1>ϑ

dy1

∫

y2>ϑ

dy2 fY(y1, y2). (3)

Since the four quadrants{(y1, y2)|y1 ≤ ϑ andy2 ≤ ϑ}, {(y1, y2)|y1 ≤ ϑ andy2 > ϑ}, {(y1, y2)|y1 > ϑ andy2 ≤ ϑ}
and{(y1, y2)|y1 > ϑ andy2 > ϑ} are disjoint and their union isR2 we can read off Eq. (1).

3.3.2 Computing the Bivariate Probability Integral

The edge-level-crossing probability as given in Eq. (3) depends on the parametersµ1, µ2, Cov1,1, Cov2,2, Cov1,2 and
ϑ. The integral can be expressed in terms of thestandard normalcumulative distribution functionΦ(y1, y2, ρ), with
correlation coefficientρ = Cov1,2

σ1 σ2
, standard deviationσi =

√
Covi,i and integration bounds given by thestochastic

distance function

Ψi =
µi − ϑ

σi
,

such that

Pc(ϑ-crossing) = 1− (
P(Y1 ≤ ϑ, Y2 ≤ ϑ) + P(Y1 > ϑ, Y2 > ϑ)

)

= 1− (
Φ(−Ψ1,−Ψ2, ρ) + Φ(Ψ1,Ψ2, ρ)

)
. (4)

This is a very convenient formulation becauseΦ(y1, y2, ρ) can be efficiently evaluated using a 3D lookup table [2].

3.3.3 Level-Crossing in Higher Dimensions

For a scalar field in two or more dimensions we considerY = [Y1, Y2, . . . , Yn] at the grid pointsx1, x2, . . . ,xn which
are the corners of cell withn vertices; see Fig. 1 for an example. The joint probability distribution is described by an
n-dimensional Gaussian PDFfY(y1, y2, . . . , yn) with y1, y2, . . . , yn ∈ R.

According to Eq. (1), the level-crossing probability for a cell can be computed by considering thecomplementof
the cases whereno level-crossing occurs by

Pc(ϑ-crossing) = 1− [
P(Y −

1 ∩ Y −
2 . . . ∩ Y −

n ) + P(Y +
1 ∩ Y +

2 . . . ∩ Y +
n )

]
. (5)
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(a) (b)

FIG. 1: Example for the computation of a level-crossing probability in a triangular cell. The marginal distributions
at the grid points are shown in blue. Exemplarily, one realization of the interpolant is shown in green. (a) corresponds
to the consideration of the complete covariance matrix in Eq. (5) while (b) shows the approximation using pairwise
correlations in Eq. (11).

Thus,n-dimensional integral expressions such as

P(Y +
1 ∩ Y +

2 . . . ∩ Y +
n ) =

∫

y1>ϑ

dy1

∫

y2>ϑ

dy2 . . .

∫

yn>ϑ

dyn fY(y1, y2, . . . , yn) (6)

need to be evaluated. In general, these integrals cannot be evaluated in closed form. Numerical integration schemes,
e.g., Monte Carlo methods, can be used for estimation.

4. APPROXIMATE LEVEL-CROSSING PROBABILITIES

To allow fast interactive visualization, expensive numerical integration must be avoided. In addition to the trivial
approach that simply neglects the correlation structure we propose twoapproximationsfor level-crossing probabilities
that can be evaluated very efficiently, but consider correlations. The methods we define and compare in the following
are (i) the vertex-centered method assuming statistical independence, (ii) the maximum edge crossing probability, and
(iii) the linked-pairs approximation method.

4.1 Vertex- and Edge-Centered Approximation Strategies

4.1.1 Statistically Independent Vertices

The first, highly simplified approach completely neglects the correlation structure and computes probabilities under
the assumption that all random variables are statistically independent. The level-crossing probability for cellc is then

Qc = 1− [
P(Y +

1 )P(Y +
2 ) . . . P(Y +

n ) + P(Y −
1 )P(Y −

2 ) . . . P(Y −
n )

]
. (7)

However, this way the spatial distribution of uncertain isocontours is often overestimated [1, 2].

4.1.2 Maximum Edge Crossing Probability

The second measure to approximate the cell-level-crossing probability is the maximum edge-level-crossing probabil-
ity over all edges. Taking spatial correlations into account, the smallest grid entity to consider is an edge that connects
any two points(Y1, Y2) of a cell. If a cell withn vertices andm edges contains a level-crossing, at least one of its edges
contains a level-crossing as well. The converse is obviously true as well: As soon as a level-crossing occurs between
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any two vertices, the cell has a level-crossing. Thus, the edgewise level-crossing probability is a lower bound for the
cell integral. As an approximation for the cellwise level-crossing probability, we use the maximum lower bound, e.g.,

Rc = max
i=1...m

{
1− [

P(Y +
i,1 ∩ Y +

i,2) + P(Y −
i,1 ∩ Y −

i,2)
]}

, (8)

whereYi,1 and Yi,2 are the random variables associated with the vertices that are connected by edgei. In other
words, we reduce then-dimensional distribution to two-dimensional (2D) marginal distributions to find the edge with
maximum level-crossing probability.

To get an intuition why the edgewise level-crossing probability is indeed a lower bound consider the example
of a single triangular cell with independent Gaussian distributions at the verticesY1,2,3 ∼ N (0, 1). For the isovalue
ϑ = 0, the maximum edge crossing probability is Rc = 0.5. In contrast, the cellwise crossing probability is Pc =
1− [P(Y +

1 ∩ Y +
2 ∩ Y +

3 ) + P(Y −
1 ∩ Y −

2 ∩ Y −
3 )] = 0.75. Generally, for cells withn > 2 vertices the cellwise crossing

probability is larger or equal to the maximum edgewise probability because a crossing may also occur on other edges
than the one corresponding to the maximum crossing probability.

4.2 Linked-Pairs Approximation

For the third approximation, more correlations are considered. Both 2D joint and conditional probabilities for level-
crossings between any two variables of a cell can be evaluated using lookup tables. To exploit that, pairwise conditional
probabilities are evaluated in a step by step fashion from vertex to vertex of a cell; see Fig. 1. We show that this
method induces an approximate distribution that is again normally distributed. The approach has a degree of freedom
in the choice of the traversal order of the vertices{x1, x2, . . . , xn} that can be described by a spanning tree. The
Bhattacharyya distance is used to compare the different choices to the original distribution.

4.2.1 Approximate Probabilities

We approximateP(Y +
1 ∩ Y +

2 . . . ∩ Y +
n ) by

P̃(Y +
1 , Y +

2 , . . . , Y +
n ) := P(Y +

1 ∩ Y +
2 ) P(Y +

3 |Y +
2 ) . . . P(Y +

n |Y +
n−1) (9)

with conditional probabilities

P(Y +
i |Y +

i−1) =
P(Y +

i−1 ∩ Y +
i )

P(Y +
i−1)

.

The choice of pairwise joint probabilities that need to be evaluated in Eq. (9) was chosen arbitrarily, but influences
the result. The joint probabilities in each term determine which of the pairwise correlations are considered. A natural
choice does not exist. To make the choice of pairs of vertices explicit, we reformulate Eq. (9) such that the parameter
k ∈ {1, 2, . . . , nn−2} identifies a spanning tree over all vertices of the cell. The approximate probability is given by

P̃(Y +
1 , Y +

2 , . . . , Y +
n ; k) = P(Sk

1 ∩ Sk
2 )

P(Sk
3 ∩ Sk

4 )
P(Sk

3 )
P(Sk

5 ∩ Sk
6 )

P(Sk
5 )

. . . (10)

where{S1, . . . , Snn−2} are thenn−2 possiblespanning treesover n vertices, and each tree is given as an edge
list Sk = {{Sk

1 , Sk
2 }; {Sk

3 , Sk
4 }; . . .}. A method for the optimal choice ofk will be derived in the next section.

Analogously we can definẽP(Y −
1 , Y −

2 , . . . , Y −
n ; k). Theapproximate level-crossing probabilityis given by

P̃c = 1− [
P̃(Y +

1 , Y +
2 , . . . , Y +

n ; k) + P̃(Y −
1 , Y −

2 , . . . , Y −
n ; k)

]
. (11)
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4.2.2 Approximate Distribution

For the evaluation of the approximatioñPc in Eq. (10) only the pairwise correlations between random variables as
given by the spanning treeSk are used. This algorithm induces a new joint distribution for all variables. Starting from
the original Gaussian random vectorY ∼ N (µ,Σ) of a grid cellc, we derive the approximate distribution and show
that the approximated distribution is again a multivariate normal distribution

Ỹ ∼ N (µ, Σ̃).

The expected values are identical forY andỸ.
The covariance matrix̃Σ that is induced by the approximation is computed as follows: Starting fromY1 we

evaluate the correlations of the cell in a step by step fashion. Traversing the spanning treeSk from a cell vertexY1

gives an ordered list of edges{(i, j)}. For each edge(i, j) we extend the distribution iteratively withρi,j describing
the correlation betweenYi andYj . Thus, we extend the random vectorY by Yi or Yj , respectively, depending on
which one was not already included in a previous step. According to the derivations in the Appendix the correlation
coefficients for this distribution are

ρ̃i,j = ρi,j , (12)

and
ρ̃ζ,j = ρ̃ζ,iρi,j , (13)

whereζ 6= i. After iterating over all edges we can computeΣ̃ from the correlation coefficients̃ρi,j .
In other words,̃ρi,j is the product of the correlation coefficients along the path of the spanning tree connecting the

variablesYi andYj ; see Fig. 2 for an example.

4.2.3 Optimizing the Approximate Distribution

The linked-pairs crossing probabilitỹPc computed in Eq. (11) depends on the choice of a specific spanning treek for
the vertices ofc. We expect the probability to be close to the true crossing probability if the approximate multivariate
distribution is similar to the original distribution. Thus, it is our aim to choosek such that the difference between the
original distribution ofY and the approximate distribution of̃Y is minimal. As measure for the difference between
the original and the approximate distribution, we use the Bhattacharyya distance. The Bhattacharyya distance for
Gaussian distributions with identical means is given by

DB(k) =
1
2

ln





det[(Σ + Σ̃k)/2]√
det(Σ) det(Σ̃k)



 .

FIG. 2: One example for a spanning tree of a rectangular grid cell is shown. The choice of pairs of vertices on the
edges of the tree determines the pairwise correlations that are taken from the input distribution and used to compute
the remaining correlations according to Eq. (13). In this particular caseρ̃1,3 = ρ1,2 ρ2,3, ρ̃1,4 = ρ1,2 ρ2,4, and
ρ̃3,4 = ρ2,3 ρ2,4.
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To obtain the optimal tree we creatẽΣk for all treesk enumerated by the Prüfer sequence [18], computeDB(k) and
choosekmin such thatDB is minimal, i.e., we solve

kmin = arg min
k

DB(k), (14)

and considerkmin in Eq. (11). The effect of the optimization is depicted in Fig. 3 where the approximation error in
relation toDB is shown.

4.2.4 Relationship to Graphical Models

Each spanning tree of a cell can also be interpreted as agraphical modelthat describes the statistical dependencies
between the corresponding random variables. It contains only the connections between random variables that are
present as edges in the spanning tree. The model clarifies that the variables that arenot connected areconditionally

(a) (b)

(c) (d)

FIG. 3: Absolute approximation errors and Bhattacharyya distances for square cells with realistic covariance matrices
(taken from the climate simulation data set) and expected valuesµi = ϑ are depicted in scatter plots (a,b) and
histograms (c,d). In (a) the parameterk for Eq. (10) was chosen randomly while for (b) the optimalk with minimal
DB was chosen for each cell. In (c) the histograms forDB with (blue) and without (purple) optimal choice ofk are
shown. In (d), The linked-pairs approximation error with (blue) and without (purple) optimal choice ofk, and the
maximum edge approximation error (green) are shown.
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independentin the approximate distribution. The restriction to 2D marginal distributions means that each probability
can only depend on one other variable.

5. RESULTS

For a quantitative analysis of the approximation we compared the cellwise level-crossing probability Pc [Eq. (5)] that
was numerically estimated using MC sampling (see [1]) to the corresponding values of the linked-pairs approximation
P̃c, the maximum edge crossing probabilityRc, andQc (assuming independent vertices) for simple synthetic data sets.

The probabilities are plotted in Fig. 4 for rectangular grid cells and random vectors with constant unit variance,
varying mean values in Figs. 4(a)–4(c) and varying correlation coefficient in Fig. 4(d). The cell wise probabilitiesPc

are drawn in blue, the approximatioñPc in magenta,Rc in green, andQc in yellow. The isovalueϑ = 0 is constant.
In Fig. 4(a)µ1 = µ2 vary between−4 and0 with constantµ3 = µ4 = 0. In Fig. 4(b)µ1 = µ2 = µ3 vary between
−2 and2 with µ4 = −2. In Fig. 4(c)µ1 varies between−2 and2 with µ2 = µ3 = µ4 = −2. In Fig. 4(d) allµi = 0
are constant. In Fig. 4(a)–4(b) the correlation coefficientρ = 0.9 is constant. In Fig. 4(d)ρ varies between0 and
1.

FIG. 4: (Approximate) crossing probabilities are plotted for a rectangular grid cell and random vector with constant
unit variance, varying mean values in (a)–(c) and varying correlation coefficient in (d). The isovalueθ = 0 is constant.
In (a)µ1 = µ2 vary between−4 and0 with constantµ3 = µ4 = 0. In (b)µ1 = µ2 = µ3 vary between−2 and2 with
µ4 = −2. In (c) µ1 varies between−2 and2 with µ2 = µ3 = µ4 = −2. In (d) all µi = 0 are constant. In (a)–(c) the
correlation coefficientρ = 0.9 is constant. In (d)ρ varies between0 and1.
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We applied the methods to a temperature field ensemble from a hindcast climate simulation of the DEMETER
project [19] containing the results of seven different climate models and nine different sets of simulation parameters
each. From this ensemble we estimated the mean values and covariances for all rectangular grid cells. Figure 5 depicts
the correlation structure of the grid cell distributions by displaying the square roots of the eigenvalues of the correlation
matrices, i.e., the standard deviations of the distribution in the spaces of their eigenvectors. Values close to0 denote
a flat distribution in the corresponding eigenvector direction, i.e., a high correlation. As depicted, correlations in the
data set are on average very high in at least two eigenvector directions.

In Fig. 6 the uncertain isotherm contour for0◦C in the temperature field from a climate simulation is displayed.
Fig. 6(a) shows the crossing probabilitiesPc for all pixels estimated using a MC computation with 5000 samples.
Figure 6(c) shows the probabilities of the linked-pairs approximationP̃c while the absolute differences, i.e.,|P̃c−Pc|,
are depicted in Fig. 6(d). Analogously, the crossing probabilitiesQc assuming uncorrelated values and the difference
image|Qc − Pc| as well as the maximum edge crossing probabilitiesRc and the difference image|Rc − Pc| are
displayed. Note that the ranges of the color maps are individually adjusted forQc. In Fig. 6(b) the probabilities along
the green line indicated in Fig. 6(a) are shown as 1D graphs.

In Fig. 7 the crossing probabilities for a 3D temperature field from the same set of climate simulations are shown.
The discretized random field for this example consists of hexahedral grid cells. In Fig. 7(a) the joint cellwise crossing
probabilitiesPc estimated by MC sampling, (2)Qc assuming uncorrelated values, (3) approximate probabilitiesP̃c,
and (4) maximum edge crossing probabilitiesRc are displayed. To allow a quantitative comparison in (5) the proba-
bilities along a straight line in the data sets are shown as 1D graphs. The single-threaded computation times for the
3D results on an Intel i7 with 2.6 GHz are

Time (s)
Monte Carlo integration (1000 samples/voxel) 23

Max. edge method 0.17
Linked-pairs method 0.11

(a) (b)

(c) (d)

FIG. 5: Color mapped square roots of the eigenvalues (in decreasing order) of the correlation matrices of the 2D
climate data set. Histograms of the values are displayed on top of the color map in logarithmic scale.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6: Results for the 2D climate data set: (a) joint cell-wise crossing probabilityPc estimated by MC sampling;
(c) approximate probabilities̃Pc; (d) difference image|P̃c −Pc|; (e) crossing probabilitiesQc assuming uncorrelated
values; (f) difference image|Qc − Pc|; (g) maximum edge crossing probabilitiesRc; (h) difference image|Rc − Pc|.
Note that the ranges of the color maps are individually adjusted forQc. In (b) the probabilities along the green line
indicated in (a) are shown as 1D graphs.
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(a) (b)

(c) (d)

(e)

FIG. 7: Results for the 3D climate data set: (a) joint cellwise crossing probabilityPc estimated by MC sampling; (b)
crossing probabilitiesQc assuming uncorrelated values; (c) approximate probabilitiesP̃c; (d) maximum edge crossing
probabilitiesRc; In (e) the probabilities along a straight line in the data sets are shown as 1D graphs.
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6. DISCUSSION

The major advantage of the approximation methods is that the crossing probabilities can be evaluated using lookup ta-
bles which results in much faster computation times compared to MC integration of then-dimensional PDFs. Another
advantage of the lookup method compared to the MC integration is that it does not suffer from MC noise.

Like Pfaffelmoser et al. [2] the approximations employ a 3D lookup table for crossing probabilities considering
correlation. The motivation for their work was to develop a fast raycasting solution. Instead of local cellwise cross-
ing probabilities they compute first-crossing probabilities along a ray which yields viewpoint-dependent results. In
contrast, the results of our methods do not depend on any direction. By restricting correlation functions to the type
exp(−|distance|) they could compute all probabilities along each ray. The resulting correlation coefficients corre-
sponding to multiple pairs of random variables along a ray are similar to the covariance matrices induced by our
approach to compute the approximate level-crossings usingP̃c, i.e.; the correlation coefficients along the path are
multiplied; cf. Eq. (13).

Probabilities computed with the linked-pairs approximation over- or underestimate the true level-crossing proba-
bility. In contrast, the maximum edge probability yields a true lower bound.

In Fig. 8 the volume enclosed by the semitransparent gray surfaces illustrates the space of valid correlation matri-
ces, e.g., positive-semidefinite matrices, for three random variables. The red opaque surface depicts the result for the
computed correlation in the linked-pairs approximation. The approximation over- or underestimates the real correla-
tion. Correlation matrices that are computable with the linked-pairs approximation are located on a 2D subspace of all
valid correlation matrices. The linked-pairs approximation projects the unused correlation onto that subspace. Note
that the red surface depicts only one traversal orderk; matrices on two additional surfaces are used in the approxima-
tion for the remaining two traversal order choices.

In the optimization step for the choice of parameterk in Eq. (10) we proposed using the Bhattacharyya distance
as quality measure for the approximation. Fig. 3(a) confirms that this is a good measure, as a positive correlation

FIG. 8: Transparent gray surface encloses the space of all possible correlations between three random variables.
Given the correlations between variable1 and2 by ρ12 and correlation between variable2 and3 by ρ23, the red
surface depicts the computed correlation between variables1 and3 in the linked-pairs approximation.
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between Bhattacharyya distanceDB and approximation error exists. Choosing the optimal parameterk significantly
decreases the Bhattacharyya distances and the approximation errors, as can be read off in Figs. 3(b)–4(d). In that
example, the linked-pairs approximation outperforms the maximum edge approximation for optimized choice ofk,
but not for randomly chosenk.

Searching for the linked-pairs approximation with lowest Bhattacharyya distance as proposed in Eq. (14) requires
a traversal over all spanning trees for each cell. The number of spanning trees increases withO[exp(N ln N)], with N
the number of cell vertices, what can be costly for cells with many vertices. The search is independent from a specific
threshold valueϑ, and can thus be performed in a preprocessing step, allowing interactive evaluation afterwards.

A limitation of the proposed approximations is that they do not allow as to improve accuracy using a parameter or
additional terms of a series expansion. As we focused on the evaluation of one- and two-dimensional distributions it
is clear that we cannot reach arbitrary accuracy.

The results of the synthetic data sets in Fig. 4 and the climate data in Fig. 6 reproduce the result from previous
work that spatial correlations have a significant impact on crossing probabilities. In all results the differences between
Pc andQc are significant. In Fig. 4(a) the graph also shows qualitatively different behavior compared to the other
methods.

For rectangular grid cells (2D data) (see Fig. 4),P̃c overestimatesPc in most cases, whileRc underestimates it.̃Pc

is closer toPc; a large approximation error ofRc from Pc, up to over0.2, can be observed in Fig. 4(d). For the climate
data set, see Fig. 6. However, almost all deviations are below0.1. The approximation of the crossing probabilityPc

both usingP̃c and the maximum edge-crossing probabilityRc yields quantitatively and qualitatively good results.
Visual impressions are true to the results ofPc. The 3D example yields similar results. In Fig. 7 we can observe that
neglecting the correlation leads to much overestimated probabilitiesQc while P̃c andRc approximatePc quite well.

7. CONCLUSION

We presented methods for the fast approximation of level-crossing probabilities of Gaussian random fields that allow
interactive exploration of uncertain isocontours. The approximation methods reduce the computation of level-crossing
probabilities to evaluations of univariate and bivariate CDFs. This is implemented using lookup tables to avoid expen-
sive numerical integration during rendering.

In the maximum edge crossing approximation the edge-related crossing probabilities of a grid cell are computed
and the maximum is taken. In the linked-pairs approximation, pairwise correlations are evaluated step by step, span-
ning all random variables of a cell. This induces an approximate distribution that is again normally distributed. We
used the Bhattacharyya distance for choosing the optimal approximation and showed that it is a good measure for
minimizing the approximation error.

Our results confirm that it is essential to consider spatial correlations. Both approximation methods, the maximum
edge crossing method and the linked-pairs method, show comparable good results for real world data. While the
maximum edge crossing method is conceptually simpler and provides a lower bound for real cellwise probabilities,
the linked-pairs method requires a preprocessing step and—for the data sets analyzed—outperforms the maximum
edge crossing method in terms of accuracy.

The approximated level-crossing probabilities are in good agreement with the true cellwise crossing probabilities,
although pathological cell configurations exist where the error can be high. Experiments show that the approximation
works very well in practice, and differences are hardly observable in the visualizations.

8. FUTURE WORK

Finding the optimal spanning tree in Eq. (14) is costly in the preprocessing step of the linked-pairs approximation.
Contrarily, the maximum edge probability works very well in practice, and seems to select a particular edge as espe-
cially important for a cell. Using this edge as starting point for a greedy search of the optimal spanning tree potentially
reduces the preprocessing effort significantly.

As proposed, original correlations between vertices of a cell are used for the linked-pairs approximation. It might
be possible to further reduce the Bhattacharyya distance of the approximated distribution by relaxing this requirement
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and distribute correlation deviations among all entries of the correlation matrix. Preliminary experiments indicate that
the Bhattacharyya distance can further be reduced with an additional simple gradient-based optimization method.

APPENDIX

In the following, we show that the approximate distribution forỸ is again a multivariate normal distribution, and
derive a formula for computing the covariance matrix of that approximate distribution. Without loss of generality,
distributions with zero mean are assumed. Pairwise correlations are iteratively added to a multivariate distribution,
yielding again another multivariate distribution that serves as input for the next step. By reordering random variables,
we always extend the last variable of a random vector.

Given an-dimensional multivariate normal distribution of the random vectorY = [Y1, Y2, . . . , Yn] with covari-
ance matrixΣ = (ρijσiσj)1≤i,j≤n, variancesσ2

i andρii = 1, we consider a second random vectorȲ = [Yn, Yn+1]
with a two-dimensional normal distribution that describes the extension ofY by another variable. The covariance
matrix of Ȳ is

ΣȲ =
(

σ2
n ρn,n+1σnσn+1

ρn,n+1σnσn+1 σ2
n+1

)
. (15)

Covariances between the firstn− 1 variables andn+1 are not explicitly stated. In the following, the PDF of the joint
distribution of the two distributions is computed.

With fY(y1, . . . , yn), the PDF describingY, andfyn+1(yn+1|yn) the PDF of the conditional distribution ofyn+1

givenyn, the joint PDF is given by the product of both PDFs, asfyn+1 is independent fromy1 . . . yn−1:

f(y1, . . . , yn+1) = fY(y1, . . . , yn)fyn+1(yn+1|yn) (16)

Then-dimensional multivariate normal distribution is given by

fY(y1, . . . , yn) =
1

(2π)n/2 |Σ|1/2
exp

[
−1

2
(y1 . . . yn)Σ−1(y1 . . . yn)T

]
(17)

The conditional density foryn+1 givenyn is again normally distributed with mean̄µ = αyn, whereα = ρn,n+1
σn+1
σn

and variancēσ2 = σ2
n+1(1− ρ2

n,n+1). It is then

fyn+1(yn+1|yn) =
1√

2πσ̄2
exp

[
− (yn+1 − αyn)2

2σ̄2

]
, (18)

and can be written in matrix form as

fyn+1(yn+1|yn) =
1√

2πσ̄2
exp

[
−1

2
(ynyn+1)

(
α2/σ̄2 −α/σ̄2

−α/σ̄2 1/σ̄2

)(
yn

yn+1

)]
. (19)

Using the following identity for the inverse of the(n + 1)× (n + 1) matrix and employing block matrix notation







Σ−1 0
...

0 · · · 0


 +




0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0
0 · · · 0 α2/σ̄2 −α/σ̄2

0 · · · 0 −α/σ̄2 1/σ̄2







−1

=
(

Σ αΣn

αΣT
n α2Σn,n + σ̄2

)
,

whereΣn is thenth column ofΣ andΣn,n the entry at(n, n) of Σ, the joint distributionf can be written as

f(y1, . . . yn+1) =
1

(2π)
n+1

2 |Σ| 12 |σ̄2| 12
exp


−1

2
(y1 . . . yn+1)

(
Σ αΣn

αΣT
n α2Σn,n + σ̄2

)−1




y1

...
yn+1





 . (20)
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With α2Σn,n + σ̄2 = σ2
n+1 and

Σ∗ =
(

Σ αΣn

αΣT
n σ2

n+1

)
(21)

the joint distribution is finally

f(y1, . . . yn+1) =
1

(2π)
n+1

2 |Σ∗| 12
exp

[
−1

2
(y1 . . . yn+1)Σ∗

−1(y1 . . . yn+1)T

]
. (22)

It is left to show that|Σσ̄2| = |Σ∗|. Applying the block matrix formula for determinants
∣∣∣∣
(

A B
C D

)∣∣∣∣ = |A||D − CA−1B| (23)

to Eq. (21) yields the desired equality:

|Σ∗| = |Σ||σ2
n+1 − αΣT

nΣ−1αΣn|
= |Σ||σ2

n+1 − α2ΣT
n (0 · · · 01)T |

= |Σ||σ2
n+1 − α2Σnn|

= |Σ||σ2
n+1 − α2σ2

n|
= |Σ||σ2

n+1(1− ρ2
n,n+1)|

= |Σ||σ̄2|
= |Σσ̄2|. (24)

The last column of Eq. (21) contains the covariances betweenY1, · · ·Yn and the last variableYn+1. The covariances
are

αΣN = (ρi,nρn,n+1σiσn+1)1≤i≤n, (25)

i.e., the correlations to variableYn are multiplied byρn,n+1 for variableYn+1.
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