
International Journal for Uncertainty Quantification, 3 (2): 143–156 (2013)

VISUALIZING UNCERTAINTY IN PREDICTED
HURRICANE TRACKS

Jonathan Cox,1,∗ Donald House,1 & Michael Lindell2

1Clemson University, 100 McAdams Hall, Clemson, SC 29634
2Texas A&M University, 3137 TAMU, College Station, TX 77843

Original Manuscript Submitted: 09/02/2011; Final Draft Received: 08/02/2012

The error cone is a display produced by the National Hurricane Center in order to present its predictions of the path of
a hurricane. While the error cone is one of the primary tools used by officials, and the general public, to make emergency
response decisions, the uncertainty underlying this display can be easily misunderstood. This paper explores the design
of an alternate display that provides a continually updated set of possible hurricane tracks, whose ensemble distribution
closely matches the underlying statistics of a hurricane prediction. We explain the underlying algorithm and data
structures, and demonstrate how our displays compare with the error cone. Finally, we review the design and results
of a user study that we conducted as a preliminary test of the efficacy of our approach in communicating prediction
uncertainty.
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1. INTRODUCTION

Although the past 30 years have seen major advances in the scientific understanding of hurricane forecasting, there
has been a lack of systematic research on people’s comprehension of the displays used to show these forecasts. Such
work must be closely tied to data and predictions available from the National Hurricane Center [1]. The Center issues
advisoriesevery six hours during the life of a hurricane. An advisory provides the current position of the hurricane,
the speed, current bearing, wind speed, and a prediction of the hurricane’s position and intensity over the next five
days. The positions are given in 12-h increments for the first three days, and then in 24-h increments over the last two
days. The Center also makes historical hurricane data, dating back to 1851, publicly available from its website. This
dataset includes the latitude, longitude, speed, and bearing at 6-h increments for the life of each historical track.

One of the primary visual aids provided by the National Hurricane Center is theerror cone. An example of an
error cone, also commonly referred to as thecone of uncertainty, is shown in Fig. 1. The center line represents the
predicted hurricane track. The width of the cone is determined using historical forecast errors over a 5-year sample,
and represents a 67% likelihood region for the actual hurricane track [2].

Some researchers have concluded that many people misinterpret the probabilistic concepts that are being commu-
nicated by the error cone [3]. The first problem is that the error cone tends to give the impression to those inside the
cone that they have an exaggerated chance of being in the hurricane’s path, while those outside of the cone tend to feel
a false sense of security. This intutitive interpretation seems to follow MacEachren’s suggestion that edge crispness
could be used to indicate levels of certainty, with blurred or fuzzy edges indicating a high level of uncertainty and
crisp edges indicating a high degree of certainty [4]. In addition, it is very easy to misinterpret the cone as the region
that will experience the effects of the hurricane, rather than as the region through which the hurricane path will likely
pass.

To address these potential problems with the error cone visualization, we are investigating a new method that
attempts to disaggregate the statistics of the error cone, in order to show the diversity and distribution of hurricane
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The Error Cone

Our Method

FIG. 1: Our visualization at three different times for the same advisory.

tracks that it might subsume. Our approach uses a display that is continuously being updated with candidate path
predictions that are drawn from the distribution of likely paths represented by the error cone. We generate possible
hurricane tracks, which are composited over each other, and fade out with time. Our assumption is that this type of
display will be superior to the error cone in allowing subjects to more accurately predict the likelihood of a hurricane
to affect a particular area, as indicated by their ability to describe the strike probability distribution indicated by the
display.
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Visualizing Uncertainty in Predicted Hurricane Tracks 145

The goal is to produce a display that shows a wide range of possible outcomes, while maintaining the statistical
characteristics of the error cone. Simply generating these hurricane paths according to a Gaussian distribution about
the predicted path would not be correct for two reasons. The first is the level of diversity. While hurricanes often track
the predicted path, extreme deviations are not uncommon. Figure 2 shows all of the hurricane tracks in the Gulf of
Mexico region since 1945. While some patterns can be seen in this historical data, the most salient characteristic is that
the behavior of individual hurricanes can vary widely. The second is that we have no reason to assume that the area of
prediction is normally distributed. In our work we use both the projected path of a hurricane as well as historical data
to achieve a desirable level of path diversity.

2. BACKGROUND

2.1 Previous Studies

The task of visualizing uncertainty is not new to researchers. Efforts have been made in a wide range of scien-
tific fields to develop different methods which convey uncertainty effectively. MacEachren et al. [5] discuss several
principal ideas that have evolved over the past several years from different communities, as well as the challeneges
researchers currently face while developing new techniques in this difficult area. Pang [6] investigates several ideas
behind visualizing uncertainty associated with natural disasters, while Kunz et al. [7] further address developments
associated with depicting uncertainty in the area of risk management of natural disasters.

Clearly, visualization tools that communicate information on the parameters and uncertainties of hurricane predic-
tions need to be designed in formats that users are able to process quickly and effectively. While several visualization
tools are available that describe the various parameters of a hurricane advisory, Broad et al. [3] have shown that the
error cone is most widely used by officials and the general public as a means of evaluating the progress and prediction
of a hurricane. Unfortunately, an evaluation of the available products during the 2004 Florida hurricane season showed
that for many the error cone was not clearly communicating the probabilistic nature of the hurricane prediction or its
potential path [8]. Not only was an inappropriate level of confidence assigned to the area within the cone, but in many
cases the very nature of the cone and predicted track were misunderstood.

Despite its importance to officials and the general public, little has been done to test the interpretability or to
develop alternatives that are likely to be better understood. There has been some work on other issues related to

FIG. 2: Historical hurricane tracks since 1945.
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hurricane prediction. For example, Steed et al. [9] presented an illustrated visualization method that displayed a
hurricane’s previous track and wind swath area by processing all of the advisories over the life of a hurricane. Martin
et al. [10] presented a study that examined a user’s ability to effectively judge the magnitude and direction of a
hurricane’s winds as a two-dimensional vector field. While both showed interesting results, neither visualized the
uncertainty associated with a hurricane prediction as a part of their method. We know of no other work developing
alternative displays that attempts to show the natural uncertainty associated with hurricane predictions while still
describing the most probable path.

2.2 Computing Distance and Direction on the Earth’s Surface

All of the calculations used in our algorithm take into account the curvature of the Earth. These calculations are well
known [11], but are summarized here for convenience. To conform to the standards of navigation, a bearing of0◦ is
true north, and increases clockwise through360◦. Latitude is0◦ at the Equator, and90◦ at the North Pole. Longitude
is 0◦ at the Greenwich Meridian, increasing in the positive direction to the East. For the following formulas,(ϕi, ϑi)
represent the latitudinal and longitudinal coordinates of a pointi in degrees, andR = 6371.0 km is the radius of the
Earth.

To determine the distanced between two points(ϕ1, ϑ1), and(ϕ2, ϑ2) we use the Haversine formula,

a = sin2

(
ϕ2 −ϕ1

2

)
+ cos ϕ1 cos ϕ2 sin2 ϑ2 − ϑ1

2
,

d = 2R tan−1

√
a

1− a
.

The bearing from one point to another is given by

θ = tan−1

[
sin(ϑ2 − ϑ1) cos ϕ2
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]
+ 180◦.

Note that as a path is traveled from an initial position to a final position, the bearing will change continuously.
Given a starting position(ϕ1, ϑ1), initial bearingθ, and distanced in kilometers, the final position(ϕf , ϑf ) is

given by
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3. METHODOLOGY

Our method of depicting the uncertainty of a projected hurricane track uses a Monte Carlo process to repeatedly
generate possible hurricane tracks. These tracks overlay one another and fade out over time, which gives the display
a changing and dynamic quality as demonstrated in the three snapshots shown in Fig 3. Individual paths have low
opacity, but opacity accumulates as paths overlap each other. This gives areas with a high concentration of paths an
opaque look, while areas of low concentration maintain a transparent look. This follows Drecki’s thoughts that more
opaque colors should be an indication of greater certainty [12].

Our algorithm uses a time-varying probability density to generate tracks that closely follow the predicted path,
and a Markov model, determined from historical data, to generate tracks that move away from the prediction. These
are used to iteratively generate 3-h sections of a track until the full track has been completed. Each of our generated
tracks is initialized to the speed and bearing at the start of the current advisory. Once the initial speed and bearing is
determined, a bearing and speed change for the next section is generated from one of our probability models. This
bearing and speed change is applied to the current speed and bearing to determine a new position.

International Journal for Uncertainty Quantification



Visualizing Uncertainty in Predicted Hurricane Tracks 147

FIG. 3: Our visualization at three different times for the same advisory

As each path is initialized, the statistical properties of the paths already generated will help decide which of the
two probability models will be used to determine the bearing and speed change for each segement of the new path. If
68% or more of the generated paths fit the error cone, then each segment of the path being generated has a 95% chance
of using the Markov model to determine the speed and bearing change and a 5% chance of using the time-varying
probability density function. If less than 68% of the paths fit the error cone, then each segment of the path being
generated has a 99% chance of using the time-varying probability density function to determine the speed and bearing
change, and a 1% chance of using the Markov model.

A generated path is said to fit the error cone if each point along the generated path is within a distanced of the
corresponding point on the predicted path, whered is determined by the width of the error cone at that point.

The rest of this section describes how the predicted path and historical data are each used to generate the speed
and bearing changes that are applied to each path segment.

3.1 Using Predicted Data

In order to use the prediction from the current advisory for path generation, we treat the prediction as a time varying
probability density function

p(∆θ, ∆s|t;∆t),
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where∆θ is a random variable representing bearing change,∆s represents speed change,t is time since the beginning
of the advisory, and∆t is a parameter for the time step over which change takes place. We discretize the time axis,
yielding a set of fixed probability density functions of the form

pt(∆θ, ∆s;∆t),

wheret is the time at the start of a segment.
In order to build these time-indexed density functions, we use the prediction data contained in the advisory. At each

time step available in the prediction, we determine two corresponding points on the perimeter of the error cone. While
the advisory provides location information for several points along the predicted path, the only initial information
for the error cone is its width at specific points, which is determined by the National Hurricane Center on a yearly
basis. Given a point on the predicted path, the corresponding points on the two sides of the error cone are uniquely
determined by the width of the cone if we measure out this distance at a bearing of90◦ from the predicted path. Linear
interpolation is used on the predicted path and on the perimeter of the error cone to find sample points along each
at 3-h segments. The final bearing, initial bearing, and speed at each of these points is then calculated. To find these
values, we look at three consecutive points on a path segment,pi−1, pi, andpi+1. The speed at pointpi is calculated
by finding the distance frompi to pi+1 and dividing by the number of hours in the segment (3 h in our study).
Figure 4 shows how the change in bearing∆θ is computed from these points. The final bearingθf for pi is found by
taking the bearing frompi to pi−1, and adding180◦. The initial bearingθi for pi is the bearing frompi to pi+1. The
bearing change at each point is just the minimal angular difference between the final bearing and initial bearing. The
speed change is the speed difference betweenpi andpi−1. These speed and bearing changes are then used to make a
probability density function for the bearing change and for the speed change at each of the 3-h marks of our advisory.

We approximate the probability density function governing bearing change at each time step by estimating the
probabilities of a small set of bearing changes, and interpolating between them. In our work we are using 101 samples.
The central sample valuec is set to the bearing change of the corresponding point on the predicted path. The minimum
and maximum bearing changes sampled are

m = c + 1.5[min(∆θl,∆θr)− c],

M = c + 1.5[max(∆θl, ∆θr)− c],
(1)

where∆θl and∆θr are the bearing changes on the left and right sides of the error cone at the current time. Half of
the remaining samples are evenly spaced fromm to c with the other half evenly spaced fromc to M . Equation (1)
provides a support that is 1.5 times the distance between the minimum and the maximum bearing changes, giving
support outside the error cone. Note that the distance between the samples on the lower half of the distribution will
generally not be the same as the distance between the samples on the upper half.

pi-1

pi

pi+1

θf

θi∆θ

FIG. 4: Initial bearing and final bearing.
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The probabilities corresponding to each sample are estimated as

p(∆θ) =
1

σ
√

2π
e[−(∆θ−c)2]/2σ2

,

where∆θ is the sample value; the standard deviationσ is set to(c−m)/3 if the sample bearing change is less thanc
or set to(M − c)/3 if it is greater thanc. This gives a distribution on each side of the predicted path that reaches two
standard deviations at the error cone edges. Once the probabilities of each of the samples have all been found, the set
of samples is scaled so that the total area under the curve, estimated using the trapezoidal rule, is 1.0. Figure 5 shows
an example distribution shape, which will typically not be Gaussian.

When using the predicted data to generate the bearing and speed change for a given segment, the appropriate
probability density function is indexed by the current time. We generate a random number from 0 to 1, numerically
integrate the probability density function using the trapezoidal rule until the integration reaches this number, and
return the corresponding bearing.

Speed change is determined similarly, with the exception being the computation ofm andM . To include speed
changes that allow for the generated hurricane tracks to reach the full range of area inside the error cone, these
equations have been modified to

m = c + 3.0[min(∆θl,∆θr)− c],

M = c + 3.0[max(∆θl, ∆θr)− c],
(2)

The use of the probability density function allows us to generate speed and bearing changes that tend to create
paths falling within the error cone, with highest density near the center of the cone.

3.2 Using Historical Data

Unlike our treatment of the predicted data, we represent the history of hurricane paths with a Markov model, which
we use to determine bearing and speed changes given a hurricane’s current location, speed, and bearing. If the bearing
change random variable is∆θ and the speed change random variable is∆s, such a model would be summarized by
the conditional probability density function

p(∆θ, ∆s|θ, s, ϕ, ϑ; ∆t),

whereθ is the current bearing,s is the current speed,ϕ is the current latitude,ϑ is the current longitude, and∆t is a
time-step parameter.

In our current method, we make the assumption that changes in direction and speed are independent of the hurri-
cane’s current speed, reducing the conditional probability to

p(∆θ, ∆s|θ, ϕ, ϑ;∆t).

FIG. 5: Time varying probability density function using predicted path data.
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This means that when we consider historical hurricane tracks in building our model, we need only concern ourselves
with the position of the hurricane and its current bearing. In this way we attempt to preserve spatially local patterns
found in past hurricane activity.

This conditional probability specifies two continuous three-dimensional functions, which we discretize, first by
sampling over spatial grid cells, each representing one degree of latitude and one degree of longitude, and then by
bearing, assigning a set of six bins to each grid cell, each covering60◦. We capture this discretization by constructing
a two-dimensional data structure over the Gulf Coast of the United States, where the cells can be represented as a
rectangular grid on a Mercator Projection map. Thus, the probability density functions at cell(i, j), for hurricane
paths with bearing in the angular rangek are given by

pijk(∆θ, ∆s; ∆t).

We estimate these functions for each angular bin, by noting the bearing and speed of each historical path as it enters
the grid cell, the time it spends in the cell, and its bearing and speed when it leaves the cell. Each entrance and exit
constitutes one sample, which we use to construct kernel density estimators for the bearing and speed changes. The
resulting data structure has entries of the form shown in Fig 6.

Although historical hurricane track data are available back to 1851, in our work we use only data starting from
1945 due to concerns relating to the validity of earlier measurements. Because these data are generally too sparse to
provide adequate samples for our kernel density estimators, we generate three supplemental parallel paths on each
side of every historical path, as shown in Fig. 7. The parallel paths are created by stepping along each point of a
historical path while generating three corresponding points at 60-km intervals in both directions perpendicular to the
historical path. To assure that actual historical paths have a greater contribution to the probability density function
than the parallel tracks, every path is assigned a weight valuew, with original historical paths having weight 1.0 and
the parallel paths having weights0.75, 0.5, and0.25.

All of the historical and supplemental paths are intersected with the spatial grid cells, and used to construct two
kernel density estimators for every bin in each grid cell. These approximate the two required probability density
functions governing bearing change and speed change. Because the point at which a hurricane enters and leaves a grid
cell, as well as its bearing and speed at these respective points, is not directly available to us through the historical
records, we determine them using linear interpolation.

FIG. 6: Historical data grid cell structure.
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w = 0.25

w = 0.5

w = 0.75

w = 1.0

w = 0.75

w = 0.5

w = 0.25

FIG. 7: Propagation of a historical path.

To build the probability density function for the bearing change, we must determine the supports of the kernel
density estimator in each bin. To do this, we determine the mean and standard deviation over all of the bearing
changes stored in a bin, and then extend the minimum and maximum by three standard deviations.

The value of the kernel density estimatorK for bearing change∆θ for a single bin in a grid cell is computed as a
weighted sum of Gaussian kernels centered over each of the bearing change samples. Assumingn samples in the bin,
and lettingwi be the weight andci be the bearing change of samplei, we have

K(∆θ) =
1
W

[
n∑

i=0

wi

σ
√

2π
e[−(∆θ−ci)

2]/2σ2

]
, (3)

whereW =
∑n

i=0 wi, andσ is the standard deviation of all the bearing change samples in a bin.
Equation (3) gives the function needed to compute the bearing change. However, it is not efficient to compute

this every time it is needed, so we discretize and later interpolate when we need a value. In our algorithm, we use 11
samples evenly spaced across the supports. To account for discretization error, the curve is finally scaled so that the
area under the curve, computed using the trapezoidal rule, is 1.0. The probability density function for speed changes
is computed in the same manner. An example of a resulting density function is shown in Fig. 8. The horizontal axis

FIG. 8: Example kernel density estimator construction.
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represents bearing change. The green curves show individual samples inside the summation of Eq. (3). The area under
a green curve indicates its weight. The red curve displays the final interpolated kernel density estimator.

When it is determined that historical data should be used to predict the bearing and speed change for a given
segment, the appropriate bin is determined from the generated path’s current location and bearing. The latitude and
longitude indicate the grid cell while the bearing indicates the bin. The bearing and speed probability density functions
from that bin are then used to generate a speed and bearing change that is consistent with the historical data.

4. STUDY

We designed an experiment to examine how users estimate the spatial distribution of hurricane strike probability
when using our visualization versus the error cone. Our hypothesis was that with our method, users would show
a broader distribution of probabilities, more closely reflecting the uncertainty inherent in a hurricane advisory. To
test this, a sequence of six historical advisories was displayed to 23 participants. The participants were all graduate
students, faculty, or administrators in the School of Computing at Clemson University. Each advisory was shown
twice consecutively, once with the error cone and once with our visualization method. The order that the methods
were shown was alternated between participants so that half saw the error cone first and half saw our visualization
method first. The order of the historical advisories was the same for all participants.

As show in Fig. 9, a map of the Gulf of Mexico region was displayed, with a circle divided into eight sectors
centered over the current position of the hurricane. The sectors were aligned to the cardinal directions, and users were
asked to place a set of numbered chips in the sectors to indicate their estimate of the probability that the hurricane
would exit the circle in the corresponding sector. We used the distribution of chips across all of the sectors as our
measure of each participant’s ability to estimate hurricane strike probability.

The chips had values ranging from 1 to 20. There were two 20’s, four 10’s, three 5’s, and five 1’s for a cumulative
value of 100. The interface assured that each chip was assigned to exactly one sector. To advance from one advisory
to another, all of the chips had to be assigned.

After completing the study, each participant was also asked, on a paper and pencil questionnaire, to rate which
visualization method they preferred, on a scale of 1 to 5, with a 1 indicating that they strongly preferred our method,

FIG. 9: Interface for our experimental design.
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and a 5 indicating that they strongly preferred the error cone. They were also asked for open-ended comments on the
study.

5. RESULTS

Figure 10 shows each of the six cases presented to the experiment participants, in their order of presentation, with the
top row of each case showing the error cone view, and the bottom row showing our method. These examples were

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6
FIG. 10: The six cases as shown to experiment participants.
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taken from actual advisories, from the National Hurricane Center online archive [13]. They were chosen to represent
a number of distinct predicted paths, all occurring in the Gulf of Mexico region. The most famous is case 5, which is
an advisory for Hurricane Katrina.

We performed our statistical evaluation of the experimental results by first doing a profile analysis of the distri-
bution of strike percentages across all of the sectors for each case, comparing results obtained with the error cone
and our visualization method. The null hypothesis was that there should be no difference in the distribution profile
based on visualization method. We then ran a T-Test for each sector, for each case, to further isolate where significant
differences might lie.

Table 1 summarizes the results of these analyses. The profilep values for each case are shown in the bottom
row, with p values for each sector listed above them. Cells colored red indicate no significant difference (p > 0.10),
cells colored blue indicate marginal difference (p ≤ 0.10), while cells colored green indicate significant difference
(p ≤ 0.05). Within the rows for the sectors, a solid box surrounds the sector or sectors, for each case, through which
the error cone exits the circle. For example, in case 1 the error cone exits through both the North and Northwest
sectors, while in case 4 it exits only through the Northwest sector (see Fig. 10).

Turning first to the profile analysis, cases 2, 3, 4, and 5 showed significant differences, while cases 1 and 6 did not.
Fig. 11 provides a visual comparison of the profiles for cases 1 and 4, confirming the results of the analysis. In this
figure, sectors are on the horizontal axis, and the vertical axis shows the mean percentage assigned to each sector. The
sectors are organized with sector 1 facing directly south, and continuing clockwise so that Sector 7 faces southeast.
Note from this figure that the main source of difference in case 4 is a wider distribution of strike probability, toward
the east with our visualization method than with the error cone.

TABLE 1: Profile analysis and t-test results
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FIG. 11: Profiles of two hurricane cases with low and high significant difference.
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Further inspection of these different cases revealed an interesting observation. In cases 3 and 4, which showed
the strongest profile differences, the error cone stayed almost entirely within a single sector and exited entirely within
that sector. For the rest of the cases, the area of the error cone was more evenly split between two adjacent sectors.
This leads us to speculate that an additional study with a more fine-grained structure may be needed to determine the
overall significance of the difference between the two visualization methods.

Finally, we looked at the mean direction for each case, as shown in Fig. 12. The blue line in the figure shows the
direction of the center line of the error cone, as it crossed the circle boundary. We see that the overall trend in mean
direction across all cases, and for both visualization methods, closely matches the expected mean direction. However,
for our method, cases 3 and 4 shift toward the north, while both methods shift toward the west for case 5. For cases
3 and 4, the north shift can be explained by the influence of historical trends in our visualization. Historically, central
Gulf hurricanes headed northwest tend to veer toward the north and northeast. We expect that the shift to the west in
case 5 is because the hurricane prediction starts out almost wholly in the west-facing sector and then shifts later to the
northwest, exiting almost wholly in that sector. It may be that participants ignored which sector the hurricane exited
the circle in, and instead considered the entire path.

The results of the qualitative analysis were quite clear. On the paper and pencil questionnaire, only one participant
out of 23 indicated that they slightly preferred the error cone, with a score of 4. All other responses were either a
strong preference for our method with a score of 1, or a slight preference, with a score of 2. The mean score over all
of the participants was 1.56, and the standard deviation was 0.53.

The participants’ open-ended feedback suggests that our method gave the users a better overall understanding
of the uncertainty and unpredictability associated with forecasted hurricane tracks. One consistent criticism of our
method was that while it was more visually interesting to watch and provided a better insight into the dynamic
behavior of hurricanes, it was also cognitively more difficult to work with than the error cone.

6. CONCLUSION

We have presented a visualization method as an alternative to the error cone display produced by the National Hur-
ricane Center. Our method presents an ensemble of continuously updated tracks demonstrating the range of possible
hurricane outcomes. It uses both a hurricane’s current advisory information and data on historical hurricanes to create
a dynamic display showing the variety of possible hurricane tracks. This approach produces tracks that lie both inside
and outside the error cone, while maintaining statistical characteristics similar to those underlying the hurricane ad-
visory. Our experimental study showed that there are differences between estimates of spatial distribution probability
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made when using the error cone and our visualization method. However, these differences lie in the breadth of the
distribution, and not in the mean. Thus, we can conclude that our method does not mislead users into making incorrect
estimates of the most probable direction of a hurricane strike, and may help them to better understand the variance
inherent in the prediction. Therefore, we conclude that there is justification for further study of this new visualization
method, particularly with an emphasis on its use in making more fine-grained strike estimates.

Future work will include refining the algorithm, running additional user studies to investigate how users perceive
the uncertainty of a predicted hurricane track related to areas within the error cone and for particular geographical
locations, and using our method as a base to support other visualization tools. One idea is to generate a heat map from
the generated tracks, and use it to create a three-dimensional display that describes the probability of a hurricane track
in terms of a height field. This could be displayed in a three-dimensional view, or a section through this view, following
the coastline, could be displayed in two-dimensions. Another possible visualization would be to superimpose our
method over the error cone, so that both summary statistics and detailed outcomes can be viewed. We would like
to explore methods to incorporate other important hurricane information, such as wind speed and storm shape, into
the display. Finally, it would be useful to design a tool to assist in evacuation decision making, which would require
integrating evacuation and hurricane models.
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