NOMENCLATURE

(In order to use a common nomenclature some definitions and equations have been reformulated from their original versions. Care has been taken to ensure that equations remain correct)

- A Parameter modifiying homogeneous void fraction (-)
- A_1 Constant in Friedel correlation (-)
- A_2 Constant in Friedel correlation (-)
- a Constant in friction factor equation (-)
- a Distance from dividing streamline to side arm (m)
- B Constant in Chisholm equation (-)
- B Dimensionless displacement thickness (-)
- b Power in friction factor equation (-)
- C Diameter correction factor (-)
- C Constant in Chisholm equation (-)
- C_c Contraction coefficient (-)
- C_G Constant in friction factor expression for gas (-)
- C_L Constant in friction factor expression for liquid (-)
- C_o Constant in drift flux model (-)
- C_I Constant in Equation (4.8) (-)
- C_I Constant in Equation (4.30) (-)
- C_2 Constant in Equation (4.8) (-)
- C_2 Constant in Equation (4.30) (-)
- C_3 Constant in Equation (4.33 (-)
- C_4 Constant in Equation (4.33) (-)
- C_5 Constant in equation for C_4 (-)
- C_6 Constant in equation for C_4 (-)
- c Drop concentration (kg/m³)
- c_D Drag coefficient (-)
- c_d Concentration in drops (kg/m³)
- c_F Concentration in film (kg/m³)
- D Dissipation (N/m²)

k

k

k k_{12}

 k_{13}

L

L L_1

 L_2

 L_s L'

M

```
D_{32}
         Sauter mean diameter (m)
         Bubble diameter (m)
D_b
         Drop diameter (m)
D_d
         Hydraulic diameter for gas part of the flow in stratified flow (m)
D_g
         Inner diameter of annulus (m)
D_i
D_{l}
         Hydraulic diameter for liquid part of the flow in stratified flow (m)
         Outer diameter of annulus (m)
D_o
D_t
         Pipe diameter (m)
         Energy dissipation per unit mass (m<sup>2</sup>/s<sup>3</sup>)
E
E_{I}
         Constant in Premoli et al. correlation, defined by Equation (2.45) (-)
E_2
         Constant in Premoli et al. correlation, defined by Equation (2.46) (-)
         Entrained fraction (-)
E_f
         Rate of entrainment into boundary layer (
E_{h}
         Initial fraction of liquid entrained (-)
E_o
E_{vD}
         Rate of evaporation from the drops (kg/m<sup>2</sup>s)
E_{vF}
         Rate of evaporation from the film (kg/m^2s)
         Wall roughness (m)
e
         Eccentricity of annular geometry (-)
e
         Parameter used by Pols et al.
e
F
         Force (N)
F
         Function in Equation (5.6) defined by one from Equations (5.7) to (5.11)
         Drag force on drops
         Fraction depositing by diffusion (-)
         Frequency (1/s)
         Friction factor (-)
         Parameter used by Pols et al.
         Nett centripetal force (m/s<sup>2</sup>)
         Friction factor for contraction specified by Equation (9.46)
         Friction factor for enlargement specified by Equation (9.46)
         Friction factor for smooth wall (-)
         Slug frequency (1/s)
f_s
G'
         Fraction of gas taken off (-)
g
         Gravitational acceleration (m/s<sup>2</sup>)
         Constant in Premoli et al. correlation, defined by Equation (2.44) (-)
j
K
         Empirical correction factor for effect of diameter ratio in T-junctions (-)
K
         Constant (-)
K
         Discharge coefficient (-)
K_{12}
         Momentum correction factor for run of T-junction (-)
```

Number of velocity heads lost (-)

Pipe length (m)

Mass (kg)

Length of slug unit (m)

Length of Taylor bubble (m) Length of liquid slug (m)

Fraction of liquid taken off (-)

Mass transfer coefficient for deposition (m/s)

Loss coefficient for flow along main pipe (-) Loss coefficient for flow into side arm (-)

Parameter defined by Equation (2.58) Parameter defined by Equation (2.58)

Damping coefficient in theory of Shoham et al. (1/s)

- \dot{M} Mass flow rate (kg/s) \dot{m} Mass flux (kg/m²s)
- N Parameter in Rosin Rammler equation, Equation (6.63)
- N Power law exponent (-)
- P Periphery (m)
- p Pressure (N/m²)
- Q_{ge} Volumetric rate of gas entrainment
- \dot{q} Heat flux (W/m²)
- R Pipe or local radius in Venturi (m)
- R_A Rate of entrainment (kg/m²s)
- R_D Rate of deposition (kg/m²s)
- R_c Radius of curvature of a bend (m)
- r Radial coordinate (m)
- r_o Radius of arc as used by Shoham *et al.* (m)
- S Cross sectional area (m²)
- S_R Area ratio (-)
- s Sheltering coefficient (-)
- T Dimensionless group (-)
- t Time (s)
- U_R Slip ratio (-)
- u Velocity (m/s)
- u_{Di} Velocity of drops from ith group (m/s)
- u_{gs} Gas superficial velocity or volume flux (m/s)
- u_{ls} Liquid superficial velocity or volume flux (m/s)
- u_m Mixture velocity (m/s)
- *ui** Dimensionless velocity defined by equation (4.29) (-)
- u_g^* Dimensionless velocity defined by equation (4.29) (-)
- u_{τ} Shear velocity (m/s)
- u_{β} Wake velocity (m/s)
- u' Axial turbulence intensity (m/s)
- V Velocity (m/s)
- V Volume (m³)
- V_T Dimensionless shear velocity (-)
- \dot{V}_i Volumetric flow rate of ith phase
- v_{gd} Drift velocity (m/s)
- v' Radial turbulence intensity (m/s)
- W Parameter in Equation (3.1) (-)
- w' Circumferential turbulence intensity (m/s)
- \overline{X} Parameter in Rosin Rammler equation, Equation (6.63)
- X^2 Lockhart-Martinelli parameter (-)
- x_g Quality (-)
- y Distance from the wall (m)
- y Parameter defined after Equation (2.58)
- y Group defined after Equation (6.67)
- z Vertical or axial distance (m)
- z_m Mixing length (m)
- Bo Bond Number $(D_t^2 g(\rho_l \rho_g)/\sigma)$ (-)
- Bo_s Bond number for aeration of slug $(D_t^2 g \rho_l^2 / (\rho_l \rho_g) \sigma)$ (-)
- Fr Froude number for bends defined by Equation (9.6)
- Fr Froude number for bends defined by Equation (9.14)

```
Fr_F
           Froude number used by Friedel and defined in Equation (2.78) (-)
           Gas Froude number used by Zapke and Kruger and defined as u_g^{*2} (-)
Fr_{\rho}
           Liquid Froude number used by Zapke and Kruger and defined as u_l^{*2} (-)
Fr_{I}
Fr
           Froude Number used in the Taitel/Dukler flow pattern transition model and defined in
           Equation (3.2, 7.17) (-)
           Froude Number used by Grolman and Fortuiun (u_{gs}^2/(1-\varepsilon_l)^2gD_t) (-)
Fr_{\varphi GF}
           Froude number for flow around a bend defined by Gardner and Neller (u_m^2/gR_b sin\theta) (-)
Fr_{\theta}
           Froude number for phase split at a junction from Hart et al. and defined in Equation
Fr_{l13}
           (10.29)(-)
           Kutatdeladze number for gas (u_{gs}\sqrt{\rho_g}/(\rho_l g\sigma)^{0.25})
Ku_g
           Kutatdeladze number for liquid (u_{ls}\sqrt[3]{\rho_l}/(\rho_l g\sigma)^{0.25}
Ku_{I}
N_{\nu}
           Dimensionless viscosity defined by Equation (6.46) (-)
Oh
           Ohnesorge number (\eta_l/\sqrt{[\rho_l\sigma D_t]}) (-)
           Reynolds number for drop drag (\rho_g|u_{gs}-u_D|D_t/\eta_g) (-)
Re_D
           Reynolds number based on roughness height (-)
Re<sub>e</sub>
           Reynolds number for gas (\rho_g u_{gs} D_t / \eta_g) (-)
Re
           Reynolds number for liquid (\rho_l u_{ls} D_t / \eta_l) (-)
Re_l
           Reynolds number for liquid film in annular flow (\dot{m}_{lF}D_t/\eta_l) (-)
Re_{lF}
           Reynolds number for excess liquid film in annular flow ([\dot{m}_{lF} - \dot{m}_{lFC}]D_t/\eta_l) (-)
Re_{\Lambda IF}
           Mixture Reynolds number used by Beattie and Suguwara (\rho_g u_{gs} + \rho_l u_{ls})D_t/3\eta_l (-)
Re_m
Re_P
           Reynolds number used by Primoli et al. (\dot{m}D_t/\eta_I) (-)
           Reynolds number for slug in horizontal flow (\rho_l u_m D_t / \eta_l) (-)
Res
           Reynolds number used in the homogeneous model (\dot{m}D_t/\eta_{TPH}) (-)
Re_{TPH}
           Reynolds number for wavy analysis used by Pols et al. (\rho_o U \delta_b/\eta_l) (-)
Re_w
           Reynolds number based on displacement thickness (-)
Re*
St
           Strouhal number (fD_t/u_{ls}) (-)
           Strouhal number for horizontal slug flow (f_sD_t/u_{gs}) (-)
St_{\varrho}
We
           Weber Number (\rho_g u_{gs}^2 D_t / \sigma) (-)
We_{crit}
           Critical Weber Number (-)
          Weber Number used by Friedel (\dot{m}^2 D_t / \rho_{TPH} \sigma) (-)
We_F
           Weber Number (\rho_l u_{ls}^2 D_t / \sigma) (-)
We_{ls}
           Weber Number used by Tatterson et al. (\rho_g u_g^{*2} \delta/\sigma) (-)
We_m
We_{\lambda T}
           Weber Number based on Taylor lengthscale (\rho_g u_{gs}^2 \lambda_T / \sigma) (-)
          Weber number for excess liquid film in annular flow \left(\left[\dot{m}_{lF} - \dot{m}_{lFC}\right]^2 D_t / \rho_l \sigma\right) (-)
We_{\Delta lF}
dp/dz
           Pressure gradient (N/m<sup>3</sup>)
```

Symbols

δz	Length of element (m)
Δh_{v}	latent heat of evaporation (J/kg)
Δp	Pressure difference (Pa)
Δt	time interval (s)
Δρ	difference in density (kg/m³)
Γ	Pressure gradient ratio used by Muller-Steinhagen defined in equation (4.53)
	Parameter in equation for Taylor bubble velocity (-)

```
Volumetric film flow rate per unit perimeter (m<sup>2</sup>/s)
\Gamma^2
          Ratio of pressure differences \Delta p_{1o}/\Delta p_{go}
          Acceleration correction factor in vertical slug flow (-)
α
          Bubble fraction in slug flow (-)
β
          Inclination from horizontal (deg)
          Velocity profile correction factors (-)
\beta_k
          Correlation coefficient (-)
δ
          Film thickness (m)
δ
          Thickness of boundary layer (m)
\delta^*
          Displacement thickness (m)
          Wall roughness (m)
          Void fraction on Taylor bubble part of vertical slug flow (-)
          Void fraction (-)
          Void fraction used in accelerational part of pressure drop equation (-)
          Liquid holdup – (1 - Void fraction) (-)
          Dimensionless heat flux (-)
          two-phase multiplier (-)
          Angular position (°)
          Film flow rate per unit perimeter (kg/ms)
\Gamma_{con}
          Dimensionless base pressure coefficient for contraction specified by Equation (9.45)
          Dimensionless base pressure coefficient for enlargement specified by Equation (9.36)
\Gamma_{enl}
          Rate of momentum transport (kgm/s<sup>2</sup>)
γ
          Dynamic viscosity (kg/ms)
η
          Efficiency of drop deposition at a bend (-)
\eta_d
          von Karman constant (-)
κ
          Ratio of kinetic energies (-)
\kappa_{T}
          Ratio of boundary layer to displacement thicknesses (-)
λ
          Liquid volume fraction (-)
          Baker property correction factor \left(\frac{\rho_g}{\rho_{air}} \frac{\rho_l}{\rho_{water}}\right)^{0.5}
λ
          Surface tension (kg/s<sup>2</sup> or N/m)
σ
          Density (kg/m<sup>3</sup>)
ρ
          Effective density defined by Equation (9.33) (kg/m<sup>3</sup>)
\rho_{\it eff}
          Fraction of wall wetted (-)
Θ
          Fraction of wall wetted for idealised stratified flow with horizontal interface (-)
\Theta_0
          Angle subtended by chord bounding segment at centre(-)
          Momentum thickness (m)
θ
          Angle of convergence (°)
          Angle subtented at centre of pipe by liquid layer (°)
          Shear stress (N/m<sup>2</sup>)
          Characteristic shear stress (N/m<sup>2</sup>)
\tau_c
          Baroczy parameter defined by equation (4.49) (-)
Λ
          Baker property correction factor \frac{\sigma_{water}}{\sigma} \left( \frac{\eta_l}{\eta_{water}} \left[ \frac{\rho_{water}}{\rho_l} \right]^2 \right)^{0.5}
Ψ
```

Subscripts

Subscripts		
1	Upstream	
1	Inlet pipe of dividing junction	
2	Downstream	
	Run pipe of dividing junction	
2 3	Side arm	
3 B	Bubble	
В		
В	Taylor bubble	
D C	Bouyancy Critical	
c		
-	cap Critical	
crit DF	Difference drops/film	
d	Drift	
a E		
$\stackrel{E}{F}$	Energy Film	
FD		
	Difference film/drops Frictional	
f	Gas	
g	All fluids flowing as gas	
go H,hom		
II,nom I	Irreversible	
i	Interfacial	
i i	ith phase	
<i>l</i>	Liquid	
lE	Liquid entrained	
lF	Liquid in film	
lFC	Liquid in film at start of entrainment	
lo	All fluids flowing as liquid	
M	Momentum	
MAX	Maximum	
MP	Multiphase	
m	Mean	
0	Initial	
p	Plug	
$\stackrel{\prime}{R}$	Reversible	
r	Relative	
S	Slug	
SP	Single phase	
S	Superficial	
S	Low void fraction zone	
seg	Segment	
T^{-}	Turbulence	
TP	Two-phase	
TB	Taylor bubble	
t	Total	
th	Throat of constriction	
tt	Turbulent-turbulent	
tv	Turbulent-laminar	
VM	Volume median	

- ν
- Vapour Laminar-turbulent Laminar-laminar vt
- vv
- Wall w
- Slug wake zone Axial w
- \boldsymbol{z}