Appendix C

Some Form-Factor Formulas

C.1 Point Form Factors

In the following formulas for F_{d1-2} , elemental area dA_1 is located at the origin facing up, so that its inward normal is $-\hat{\mathbf{k}}$. The titles of the sections below relate to the nature of surface 2. Note that the entire surface 2 must be above the xy plane.

Rectangle in a Plane Parallel to the xy Plane

Let A_2 be a horizontal $a \times b$ rectangle on a plane c units up the z-axis from the xy plane. First consider the case where the rectangle has one vertex on the z-axis. The vertices of the rectangle are (0,0,c), (a,0,c), (0,b,c), and (a,b,c), respectively. Then

$$F_{d1-2} = \frac{1}{2\pi} \left[\frac{X}{X_1} \tan^{-1} \left(\frac{Y}{X_1} \right) + \frac{Y}{Y_1} \tan^{-1} \left(\frac{X}{Y_1} \right) \right]$$
 (C.1)

where X = a/c, Y = b/c, $X_1 = \sqrt{1 + X^2}$, $Y_1 = \sqrt{1 + Y^2}$. By adding, subtracting, or multiplying values given by Eq. (C.1), one can obtain F_{d1-2} for cases where a vertex is not on the z-axis. For example, if the vertices are (a, b, c), (-a, b, c), (-a, b, c) and (-a, -b, c), then F_{d1-2} will equal four times the value given by Eq. (C.1).

Rectangle in a Plane Perpendicular to the xy Plane

First consider the case where the bottom side of the rectangle is on the xy plane. Let the vertices be $P_1 = (0, c, 0)$, $P_2 = (b, c, 0)$, $P_3 = (0, c, a)$, and $P_4 = (b, c, a)$. Then

$$F_{d1-2} = \frac{1}{2\pi} \left[\tan^{-1} \left(\frac{1}{Y} \right) - \frac{Y}{\sqrt{Y^2 + X^2}} \tan^{-1} \left(\frac{1}{\sqrt{Y^2 + X^2}} \right) \right]$$
 (C.2)

where X = a/b and Y = c/b. By adding, subtracting, or multiplying values given by the above formula, one can obtain F_{d1-2} for other cases. For example, if the vertices are $P_1 = (-b, c, 0)$, $P_2 = (b, c, 0)$, $P_3 = (b, c, a)$, and $P_4 = (-b, c, a)$ then F_{d1-2} will equal twice the value given by Eq. (C.1).

Circle in a Plane Parallel to the xy Plane

Let the radius of the circle be r and its center be at (a, 0, h), making its normal $\hat{\mathbf{k}}$. Then

$$F_{d1-2} = \frac{1}{2} \left[1 - \frac{1 + Y^2 - X^2}{\sqrt{(1 + Y^2 + X^2)^2 - 4X^2}} \right]$$
 (C.3)

where Y = h/a and X = r/a. By a suitable choice for the direction of the x-axis, this formula can be made to apply for any circle in a plane parallel to the xy plane.

Circle in a Plane Perpendicular to the xy Plane

Let the radius of the circle be r and its center be at (a, 0, h), (with $a \leq r$), making its normal $\hat{\mathbf{j}}$. Then

$$F_{d1-2} = \frac{X}{2} \left[\frac{1 + X^2 + Y^2}{\sqrt{(1 + X^2 + Y^2)^2 - 4Y^2}} - 1 \right]$$
 (C.4)

where X = h/a and Y = r/a. By a suitable choice for the orientation of the x-axis, this formula can be made to apply for any circle perpendicular to the xy plane, provided a > r.

Sphere

Let the radius of the sphere be R and let the center of the sphere be H units away from the origin and lie along a line that makes an angle φ with the z-axis. [Alternatively, let the center be at $= (H \sin \varphi, 0, H \cos \varphi)$]. Then

$$F_{\rm d1-2} = X^2 \cos \varphi \tag{C.5}$$

where X = R/H.

C.2 Form Factors

Directly Opposed, Parallel Identical Rectangles

Let A_1 and A_2 both be $a \times b$ rectangles with A_2 lying c units directly above A_1 . More precisely, if the vertices of A_1 are at (0,0,0), (a,0,0), (0,b,0), and (a,b,0), then the vertices of A_2 are at (0,0,c), (a,0,c), (0,b,c), and (a,b,c). We

then have

$$F_{1-2} = \frac{2}{\pi XY} \left\{ \ln \left[\frac{X_1 Y_1}{Z} \right] + X Y_1 \tan^{-1} \left[\frac{X}{Y_1} \right] + Y X_1 \tan^{-1} \left[\frac{Y}{X_1} \right] \right\}$$

$$- \frac{2}{\pi} \left\{ \frac{\tan^{-1} X}{Y} + \frac{\tan^{-1} Y}{X} \right\}$$
(C.6)

where
$$X = a/c$$
, $Y = b/c$, $Z = \sqrt{1 + X^2 + Y^2}$, $X_1 = \sqrt{1 + X^2}$, $Y_1 = \sqrt{1 + Y^2}$.

Perpendicular Rectangles with a Common Side

Let A_1 be an $a \times b$ rectangle, let A_2 be a $c \times b$ rectangle perpendicular to A_1 , and let them share a side of length and b. More precisely, if the vertices of A_1 are (0,0,0), (b,0,0), (0,a,0) and (b,a,0), then the vertices of A_2 are at (0,0,0), (b,0,0), (0,0,c), and (b,0,c). We then have

$$F_{1-2} = \frac{1}{\pi X} \left\{ X \tan^{-1} \frac{1}{X} + Y \tan^{-1} \frac{1}{Y} - Z \tan^{-1} \frac{1}{Z} \right\}$$

$$+ \frac{1}{4\pi X} \ln \left(\frac{X_1 Y_1}{Z_1} \left[\frac{X^2 Z_1}{X_1 Z^2} \right]^{X^2} \left[\frac{Y^2 Z_1}{Y_1 Z^2} \right]^{Y^2} \right)$$
(C.7)

where $X = a/b, \ Y = c/b, \ Z = \sqrt{X^2 + Y^2}, \ X_1 = 1 + X^2, \ Y_1 = 1 + Y^2,$ and $Z_1 = 1 + Z^2.$

Coaxial Parallel Circles

Let A_1 be a circle of radius a and let A_2 be a circle of radius b, which is coaxial with A_1 and in a plane parallel to that of A_1 , h units way. In other words, if (0,0,0), (a,0,0), and (0,a,0) are three points on A_1 , then (0,0,h), (b,0,h), and (0,b,h) are three points on A_2 . Then we have

$$F_{1-2} = \frac{1}{2} \left\{ 1 + X^2 + Y^2 - \sqrt{(1 + X^2 + Y^2)^2 - 4Y^2} \right\}$$
 (C.8)

where X = h/a and Y = b/a.