Appendix C

Some Form-Factor Formulas

C. 1 Point Form Factors

In the following formulas for $F_{\mathrm{d} 1-2}$, elemental area dA_{1} is located at the origin facing up, so that its inward normal is $-\widehat{\mathbf{k}}$. The titles of the sections below relate to the nature of surface 2 . Note that the entire surface 2 must be above the $x y$ plane.

Rectangle in a Plane Parallel to the $x y$ Plane

Let A_{2} be a horizontal $a \times b$ rectangle on a plane c units up the z-axis from the $x y$ plane. First consider the case where the rectangle has one vertex on the z-axis. The vertices of the rectangle are $(0,0, c),(a, 0, c),(0, b, c)$, and (a, b, c), respectively. Then

$$
\begin{equation*}
F_{\mathrm{d} 1-2}=\frac{1}{2 \pi}\left[\frac{X}{X_{1}} \tan ^{-1}\left(\frac{Y}{X_{1}}\right)+\frac{Y}{Y_{1}} \tan ^{-1}\left(\frac{X}{Y_{1}}\right)\right] \tag{C.1}
\end{equation*}
$$

where $X=a / c, Y=b / c, X_{1}=\sqrt{1+X^{2}}, Y_{1}=\sqrt{1+Y^{2}}$. By adding, subtracting, or multiplying values given by Eq. (C.1), one can obtain $F_{\mathrm{d} 1-2}$ for cases where a vertex is not on the z-axis. For example, if the vertices are (a, b, c), $(-a, b, c),(-a, b, c)$ and $(-a,-b, c)$, then $F_{\mathrm{d} 1-2}$ will equal four times the value given by Eq. (C.1).

Rectangle in a Plane Perpendicular to the $x y$ Plane

First consider the case where the bottom side of the rectangle is on the $x y$ plane. Let the vertices be $\mathrm{P}_{1}=(0, c, 0), \mathrm{P}_{2}=(b, c, 0), \mathrm{P}_{3}=(0, c, a)$, and $\mathrm{P}_{4}=(b, c, a)$.Then

$$
\begin{equation*}
F_{\mathrm{d} 1-2}=\frac{1}{2 \pi}\left[\tan ^{-1}\left(\frac{1}{Y}\right)-\frac{Y}{\sqrt{Y^{2}+X^{2}}} \tan ^{-1}\left(\frac{1}{\sqrt{Y^{2}+X^{2}}}\right)\right] \tag{C.2}
\end{equation*}
$$

where $X=a / b$ and $Y=c / b$. By adding, subtracting, or multiplying values given by the above formula, one can obtain $F_{\mathrm{d} 1-2}$ for other cases. For example, if the vertices are $\mathrm{P}_{1}=(-b, c, 0), \mathrm{P}_{2}=(b, c, 0), \mathrm{P}_{3}=(b, c, a)$, and $\mathrm{P}_{4}=(-b, c, a)$ then $F_{\mathrm{d} 1-2}$ will equal twice the value given by Eq. (C.1).

Circle in a Plane Parallel to the $x y$ Plane

Let the radius of the circle be r and its center be at ($a, 0, h$), making its normal $\widehat{\mathbf{k}}$. Then

$$
\begin{equation*}
F_{\mathrm{d} 1-2}=\frac{1}{2}\left[1-\frac{1+Y^{2}-X^{2}}{\sqrt{\left(1+Y^{2}+X^{2}\right)^{2}-4 X^{2}}}\right] \tag{C.3}
\end{equation*}
$$

where $Y=h / a$ and $X=r / a$. By a suitable choice for the direction of the x-axis, this formula can be made to apply for any circle in a plane parallel to the $x y$ plane.

Circle in a Plane Perpendicular to the $x y$ Plane

Let the radius of the circle be r and its center be at $(a, 0, h)$, (with $a \leq r$), making its normal $\widehat{\mathbf{j}}$. Then

$$
\begin{equation*}
F_{\mathrm{d} 1-2}=\frac{X}{2}\left[\frac{1+X^{2}+Y^{2}}{\sqrt{\left(1+X^{2}+Y^{2}\right)^{2}-4 Y^{2}}}-1\right] \tag{C.4}
\end{equation*}
$$

where $X=h / a$ and $Y=r / a$. By a suitable choice for the orientation of the x-axis, this formula can be made to apply for any circle perpendicular to the $x y$ plane, provided $a \geq r$.

Sphere

Let the radius of the sphere be R and let the center of the sphere be H units away from the origin and lie along a line that makes an angle φ with the z-axis. [Alternatively, let the center be at $=(H \sin \varphi, 0, H \cos \varphi)$]. Then

$$
\begin{equation*}
F_{\mathrm{d} 1-2}=X^{2} \cos \varphi \tag{C.5}
\end{equation*}
$$

where $X=R / H$.

C. 2 Form Factors

Directly Opposed, Parallel Identical Rectangles

Let A_{1} and A_{2} both be $a \times b$ rectangles with A_{2} lying c units directly above A_{1}. More precisely, if the vertices of A_{1} are at $(0,0,0),(a, 0,0),(0, b, 0)$, and $(a, b, 0)$, then the vertices of A_{2} are at $(0,0, c),(a, 0, c),(0, b, c)$, and (a, b, c). We
then have

$$
\begin{align*}
F_{1-2}= & \frac{2}{\pi X Y}\left\{\ln \left[\frac{X_{1} Y_{1}}{Z}\right]+X Y_{1} \tan ^{-1}\left[\frac{X}{Y_{1}}\right]+Y X_{1} \tan ^{-1}\left[\frac{Y}{X_{1}}\right]\right\} \\
& -\frac{2}{\pi}\left\{\frac{\tan ^{-1} X}{Y}+\frac{\tan ^{-1} Y}{X}\right\} \tag{C.6}
\end{align*}
$$

where $X=a / c, Y=b / c, Z=\sqrt{1+X^{2}+Y^{2}}, X_{1}=\sqrt{1+X^{2}}, Y_{1}=\sqrt{1+Y^{2}}$.

Perpendicular Rectangles with a Common Side

Let A_{1} be an $a \times b$ rectangle, let A_{2} be a $c \times b$ rectangle perpendicular to A_{1}, and let them share a side of length and b. More precisely, if the vertices of A_{1} are $(0,0,0),(b, 0,0),(0, a, 0)$ and $(b, a, 0)$, then the vertices of A_{2} are at $(0,0,0),(b, 0,0),(0,0, c)$, and $(b, 0, c)$. We then have

$$
\begin{align*}
F_{1-2}= & \frac{1}{\pi X}\left\{X \tan ^{-1} \frac{1}{X}+Y \tan ^{-1} \frac{1}{Y}-Z \tan ^{-1} \frac{1}{Z}\right\} \\
& +\frac{1}{4 \pi X} \ln \left(\frac{X_{1} Y_{1}}{Z_{1}}\left[\frac{X^{2} Z_{1}}{X_{1} Z^{2}}\right]^{X^{2}}\left[\frac{Y^{2} Z_{1}}{Y_{1} Z^{2}}\right]^{Y^{2}}\right) \tag{C.7}
\end{align*}
$$

where $X=a / b, Y=c / b, Z=\sqrt{X^{2}+Y^{2}}, X_{1}=1+X^{2}, Y_{1}=1+Y^{2}$, and $Z_{1}=1+Z^{2}$.

Coaxial Parallel Circles

Let A_{1} be a circle of radius a and let A_{2} be a circle of radius b, which is coaxial with A_{1} and in a plane parallel to that of A_{1}, h units way. In other words, if $(0,0,0),(a, 0,0)$, and $(0, a, 0)$ are three points on A_{1}, then $(0,0, h),(b, 0, h)$, and $(0, b, h)$ are three points on A_{2}. Then we have

$$
\begin{equation*}
F_{1-2}=\frac{1}{2}\left\{1+X^{2}+Y^{2}-\sqrt{\left(1+X^{2}+Y^{2}\right)^{2}-4 Y^{2}}\right\} \tag{C.8}
\end{equation*}
$$

where $X=h / a$ and $Y=b / a$.

