Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v72.i6.30
pages 485-494

DIGITAL IMAGE RECONSTRUCTION BY USING ROW PRE−DISTORTION AND THIRD−ORDER MOMENT FUNCTION ESTIMATION

J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
Karen O. Egiazarian
Tampere University, Tampere, 33720, Finland
A. V. Totsky
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine

Краткое описание

The problem of search the optimal parameters of additive and multiplicative pre-distortion functions that are used for reconstruction the digital images corrupted by jitter and mixture of the additive Gaussian and impulsive noise is considered. The results of processing different kinds of test images are represented by using row-by-row image restoration with third-order moment function estimation. Performance of proposed techniques and image reconstruction accuracy are studied by computer simulations. It is shown that the suggested techniques can effectively remove heavy jitter distortions in the background of the additive Gaussian and impulsive noise.

Ключевые слова: image reconstruction, pixel, jitter, bispectral density

ЛИТЕРАТУРА

  1. Lan Du, Hongway Liu, Zheng Bao, and Mengdao Xing, Radar HRRP target recognition based on higher order spectra.

  2. Bartelt, H., Lohmann, A.W., and Wirnitzer, B., Phase and amplitude recovery from bispectra.

  3. Nakamura, M., Waveform estimation from noisy signals with variable signal delay using bispectrum averaging.

  4. Nikias, C.L. and Raghuveer, M.R., Bispectral estimation: A digital signal processing framework.

  5. Sundaramoorthy, G., Raghuveer, M.R., and Dianat S.A., Bispectral reconstruction of signals in noise: Amplitude reconstruction issues.

  6. Diant, S.A. and Raghuveer, M.R., Fast algorithms for phase and magnitude reconstruction from bispectra.

  7. Petropulu, A.P. and Nikias, C.L., Signal reconstruction from the phase of the bispectrum.

  8. Petropulu, A.P. and Pozidis, H., Phase reconstruction from bispectrum slices.

  9. Totskiy, A.V., Reconstruction of the images distorted by jitter and additive Gaussian noise.

  10. Totskiy, A.V., Image reconstruction technique by using row pre-distortion and bispectral density estimation.


Articles with similar content:

CORRECTION OF RADIOMETRIC DISTORTIONS IN IMAGES IN THE CASE OF SAR PROCESSING USING THE RANGE-DOPPLER ALGORITHM
Telecommunications and Radio Engineering, Vol.73, 2014, issue 2
Dmitry M. Vavriv, Ye. M. Gorovyi, O. O. Bezvesilniy
A Quasioptimum Algorithm for Narrow-Band Signal Detection against Random Noise Background
Telecommunications and Radio Engineering, Vol.61, 2004, issue 7-12
Vladimir G. Galushko, Yu. M. Yampolski
MULTI FREQUENCY SYNTHEZIER OF BISPECTRAL TRIPLET- SIGNAL DESIGNED FOR DIGITAL COMMUNICATION SYSTEM
Telecommunications and Radio Engineering, Vol.76, 2017, issue 2
V. V. Naumenko, A. V. Totsky, O. A. Polotska, J. T. Astola, S. K. Pidchenko
Application of the Methods of Complexation of Analogs and Fuzzy Logic for Prediction of Some Operation Metrics
Journal of Automation and Information Sciences, Vol.44, 2012, issue 12
Andrey V. Basarab, Yuriy P. Zaychenko
Radial Basic Networks M-training by Asymmetric Influence Functions
Journal of Automation and Information Sciences, Vol.44, 2012, issue 2
Alexander A. Bezsonov, Oleg G. Rudenko