Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i9.30
pages 769-786

DENOISING OF MULTICHANNEL IMAGES WITH NONLINEAR TRANSFORMATION OF REFERENCE IMAGE

S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

Краткое описание

It has been demonstrated recently that efficiency of filtering a noisy component image of a multichannel image can be sufficiently improved under condition that the multichannel image has almost noise-free component image(s) that possess high correlated with the noisy component image used as reference. High correlation and practical absence of the noise are only pre-requisites for efficient filtering of the noisy image using reference. Other criteria of similarity than cross-correlation factor are important. In this paper we show how it is possible to make the reference image very "close" to the noisy one by exploiting nonlinear transformation. Moreover, it is demonstrated that the proposed approach can be useful for denoising images corrupted by signal-dependent noise which is often the case for multichannel remote sensing data.


Articles with similar content:

DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES
Telecommunications and Radio Engineering, Vol.76, 2017, issue 19
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
AN APPROACH TO PREDICTION AND PROVIDING OF COMPRESSION RATIO FOR DCT-BASED CODER APPLIED TO MULTICHANNEL REMOTE SENSING DATA
Telecommunications and Radio Engineering, Vol.75, 2016, issue 14
M. Simeunovic, V. V. Lukin, S. K. Abramov, R.A. Kozhemiakin, I. Djurovic, B. Djurovic
CORRECTION METHOD OF ERRONEOUS VECTORS IN PIV
Journal of Flow Visualization and Image Processing, Vol.2, 1995, issue 2
I. Fujita, T. Kaizu
BUILDING DETECTION USING PROCESSING OF MONOCHROMATIC EARTH OBSERVATION IMAGE
Telecommunications and Radio Engineering, Vol.77, 2018, issue 3
А. N. Gorobets
DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova