Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Том 79, 2020 Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v79.i9.10
pages 731-742


M. E. Kaliberda
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
Leonid M. Lytvynenko
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 4 Mystetstv St., Kharkiv 61002, Ukraine
Sergey A. Pogarsky
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine

Краткое описание

The H-polarized wave scattering by the semi-infinite grating of graphene strips in the THz frequency range is considered. Graphene strips are modeled as zero-thickness resistive surface with conductivity obtained from the Kubo's formalism. The scattered field is represented as a sum of the field of currents on the strips of infinite periodic grating and correction field. The singular integral equation with additional conditions is obtained. The frequency dependences of the scattered field, as well as field distribution are presented, and the influence of the correction currents is discussed.


  1. Geim, K. and Novoselov, K.S., (2007) The rise of graphene, Nature Materials, 6(3), pp. 183-191.

  2. Ju, L., Geng, B., Horng, J., Girit, C., Martin, M. et al., (2011) Graphene plasmonics for tunable terahertz metamaterials, Nature Nanotechnology, 6, pp. 630-634.

  3. Yan, H., Li, X., Chandra, B., Tulevski, G. et al., (2012) Tunable infrared plasmonic devices using graphene/insulator stacks, Nature Nanotechnology, 7(5), pp. 330-334.

  4. Shapoval, O.V. and Nosich, A.I., (2019) Bulk refractive-index sensitivities of the THz-range plasmon resonances on a micro-size graphene strip, Journal of Physics D: Applied Physics, 49(5), pp. 055105/8.

  5. Tamagnone, M., Gomez-Diaz, J.S., Mosig, J.R., and Perruisseau-Carrier, J., (2012) Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets, Journal of Applied Physics, 112(11), pp. 114915.

  6. Xu, Z., Wu, D., Liu, Y., Liu, C., Yu, Z., Yu, L., and Ye, H., (2018) Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons, Nanoscale Research Letters, 13(1), pp. 143-148.

  7. Fel'd, Y.N., (1955) On infinite systems of linear algebraic equations connected with problems on semi-infinite periodic structures, Doklady AN USSR, 114, pp. 257-260, (in Russian)?.

  8. Fel'd, Y.N., (1958) Electromagnetic wave diffraction by semi-infinite grating, J CommunTechnol El+, 3, pp. 882-889.

  9. Zhang, B., Jornet, J.M., Akyldiz, I.F., and Wu, Z.-P, (2019) Mutual coupling reduction for ultra-dense multi-band plasmonic nano-antenna arrays using graphene-based frequency selective surface, IEEE Access, 7, pp. 33214-33225.

  10. Kaliberda, M.E., Pogarsky, S.A., Lytvynenko, L.M., Ugrimova, A. et al., (2019) Waves scattering by graphene semi-infinite grating, Proc. of IEEE 2nd Ukraine Conference on Electrical and Computer Engineering Proceedings, pp. 98-101.

  11. Hills, N.L. and Karp, S.N., (1965) Semi-infinite diffraction gratings-I, Communications on Pure and Applied Mathematics, 18, pp. 203-233.

  12. Hills, N.L., (1965) Semi-infinite diffraction gratings-II Inward resonance, Communications on Pure and Applied Mathematics, 18, pp. 385-395.

  13. Capolino, F. and Albani, M., (2009) Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation, Radio Science, 44(2), pp. 1-14.

  14. Nishimoto, M. and Ikuno, H., (1999) Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects, Progress in Electromagnetics Research, 23, pp. 39-58.

  15. Nishimoto, M. and Ikuno, H., (2001) Numerical analysis of plane wave diffraction by a semi-infinite grating, IEEJ Transactions on Fundamentals and Materials, 121(10), pp. 905-910.

  16. Shestopalov, V.P., Lytvynenko, L.M., Masalov, S.A. and Sologub, V.G., (1973) Wave Diffraction by Gratings, Kharkiv, Ukraine: Kharkiv State University Press, (in Russian).

  17. Yevtushenko, F.O., Dukhopelnykov, S.V., and Nosich, A.I., (2020) H-polarized plane-wave scattering by a PEC strip grating on top of a dielectric substrate: analytical regularization based on the Riemann-Hilbert Problem solution, Journal of Electromagnetic Waves and Applications, 34(4), pp. 483-499.

  18. Kaliberda, M., Lytvynenko, L., and Pogarsky S., (2017) Method of singular integral equations in diffraction by semi-infinite grating: H-polarization case, Turkish Journal of Electrical Engineering & Computer Sciences, 25, pp. 4496-4509.

  19. Lytvynenko, L.M., Kaliberda, M.E., and Pogarsky, S.A., (2013) Wave diffraction by semi-infinite venetian blind type grating, IEEE Transactions on Antennas and Propagation, 61(12), pp. 6120.

  20. Dukhopelnykov, S.V., Sauleau, R., Garcia-Vigueras, M., and Nosich, A.I., (2019) Combined plasmon-resonance and photonic-jet effect in the THz wave scattering by dielectric rod decorated with graphene strip, Journal of Applied Physics, 126, pp. 023104.

  21. Gandel, Y.V., (2010) Boundary-value problems for the Helmholtz equation and their discrete mathematical models, Journal of Mathematical Sciences, 171, pp. 74-88.

  22. Nosich, A.A. and Gandel, Y.V., (2007) Numerical analysis of quasioptical multireflector antennas in 2-D with the method of discrete singularities: E-wave case, IEEE Transactions on Antennas and Propagation, 55, pp. 399-406.

  23. Koshovy, G.I., (2008) Electromagnetic wave scattering by strip systems with a variable fractal dimension, Telecommunications and Radio Engineering, 67(15), pp. 1321-1331.

  24. Hanson, G.W., (2008) Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene, Journal of Applied Physics, 103(6), pp. 064302.

  25. Kaliberda, M.E., Lytvtnenko, L.M., and Pogarsky, S.A., (2016) Singular integral equations in diffraction problem by an infinite periodic strip grating with one strip removed, Journal of Electromagnetic Waves and Applications, 30(8), pp. 2411-2426.

  26. Kaliberda, M., Lytvynenko, L. and Pogarsky, S., (2018) Simulation of infinite periodic graphene planar grating in the THz range by the method of singular integrale quations, Turkish Journal of Electrical Engineering & Computer Sciences, 26(4), pp. 1724-1735.

  27. Guillemin, E.A., (1935) Communication Network, London: John Wiley and Sons.

  28. Titchmarsh, E.C., (1948) Introduction to the Theory of Fourier Integrals, Oxford University Press.

  29. Shapoval, O.V., Sauleau, R., and Nosich, A.I., (2011) Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and Nystrom-type algorithm, IEEE Transactions on Antennas and Propagation, 59(9), pp. 3339-3346.

  30. Shapoval, O.V., Gomez-Diaz, J.S., Perruisseau-Carrier, J., Mosig, J.R., and Nosich, A.I., (2013) Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range, IEEE Transactions on Terahertz Science and Technology, 3(5), pp. 666-674.

Articles with similar content:

Telecommunications and Radio Engineering, Vol.79, 2020, issue 2
K. I. Muntean, M. M. Dubinin, V. S. Senyuta, V. N. Ryabykh, А. V. Degtyarev, V. A. Maslov, O. V. Gurin
Telecommunications and Radio Engineering, Vol.77, 2018, issue 6
Ya.V. Sashkova, Ye. N. Odarenko
Telecommunications and Radio Engineering, Vol.70, 2011, issue 8
K. A. Lukin, E. M. Khutoryan
Radio Physics and Radio Astronomy, Vol.2, 2011, issue 3
A. A. Kirilenko, L. P. Mospan
Microstrip Double-Periodic Grating of Continuous Curvilinear Metal Strips as a High-Impedance Surface
Telecommunications and Radio Engineering, Vol.63, 2005, issue 2-6
S. L. Prosvirnin, P. L. Mladyonov