Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 79, 2020 Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i9.60
pages 801-811

ELECTRODYNAMIC SENSOR FOR DETERMINING THE STATE OF WATER IN BIOLOGICAL OBJECTS

Ch. Liu
Heilongjiang Bayi Agricultural University, 5, Xinfeng Str., Daqing, 163319, China
I. N. Bondarenko
Kharkiv National University of Radio Engineering and Electronics, 14, Nauka Ave, Kharkiv, 61166, Ukraine
A. Yu. Panchenko
Kharkiv National University of Radio Electronics, 14, Nauky Avenue, Kharkiv, 61166, Ukraine
N. I. Slipchenko
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv, 61166, Ukraine

Краткое описание

The distribution of free water and water associated with molecules of biological matter determines its state. The electrophysical properties of free and bound water are significantly different, and the relaxation frequency of molecules lies in the microwave range. Therefore, microwave methods of measurement are effective. The microwave sensor circuit is analysed, for which it is possible to create a rigorous analytical model. The results of calculations of the electromagnetic field components and the transfer function of the sensor are discussed, and the dimensions of its working area are estimated.

ЛИТЕРАТУРА

  1. Schegoleva, T.Yu., (1996) , Hydrate environment and structure of macromolecules, Advances in modern biology, 116(6), pp.700-714, (in Russian).

  2. Schegoleva, T.Yu., (1996) , Study of Biological Objects in the Millimeter Wave Range, Kyiv, Ukraine: Nauk. Dumka, 182 p., (in Russian).

  3. Panchenko, A.Yu., Slipchenko, N.I., and Borodkina, A.N., (2014) , On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics, Telecommunications and Radio Engineering, 73(15), pp. 1397-1407.

  4. Hyde, M.W. and Havrilla, M.J., (2016) , A broadband, nondestructive microwave sensor for characterizing magnetic sheet materials, IEEE Sensors J., 16(12), pp. 4740-4748.

  5. Kempin, M., Ghasr, M.M., Case, J., and Zoughi, R., (2014) , Modified waveguide range for evaluation of stratified composites, IEEE Trans. Instrum. Meas. 63(6), pp. 1524-1534.

  6. Kaatze, U., (2012) , Techniques for measuring the microwave dielectric properties of materials, Metrologia, 47(2), pp. S91-S113.

  7. Hyde, M.W.IV, Havrilla, M.J., and Bogle, A.E., (2016), Nondestructive Determination of the Permittivity Tensor of a Uniaxial Material Using a Two-Port Clamped Coaxial Probe, IEEE Trans. Microwave Theory and Technique, 64(1), pp. 239-246.

  8. Cenanovic, A., Schramm, M., and Schmidt, L., (2011) , Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes, IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4.

  9. Hyde, M.W. et al., (2009) , Nondestructive electromagnetic materialcharacterization using a dual waveguide probe: A full wave solution, Radio Science, 44(3), pp. 10-14.

  10. Alanen, E., Lahtinen, T., and Nuutinen, J., (1998) , Variational Formulation of Open-Ended Coaxial Line in Contact with Layered Biological Medium, IEEE Transaction on Biomedical Engineering, 45(10), pp.1241-1247.

  11. Huang, R.. and Zhang, D., (2008) , Analysis of open-ended coaxial probes by using a two-dimensional Lnite-diŬerence frequency-domain method, IEEE Trans. Instrum. Meas., 57(5), pp. 931-939.

  12. Maftooli, H., Karami, H.R., Sadeghi, S.H.H., and Moini, R., (2012) , Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracksin metals, IEEE Trans. Instrum. Meas., 61(9), pp. 2384-2391.

  13. McLaughlin, B.L. and Robertson, P.A., (2007) , Miniature open-ended coaxial probes for dielectric spectroscopy applications, J. Phys. D: Appl. Phys., 40, pp.45-53.

  14. Hosseini, M.H., Heidar, H., and Shams, M.H., (2017) , Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes, IEEE Transactions on Instrumentation and Measurement, 66(1), pp. 148-157.

  15. Poumaropoulos, C.L. and Misra, D., (1994) , A Study on the Coaxial Aperture Electromagnetic Sensor and Its Application in Material Characterization, IEEE Transaction on Instrumentation and Measurement, 43(2), pp.111-114.

  16. Blackham, D.V. and Pollard, R.D., (1997) , An Improved Technique for Permittivity Measurements Using a Coaxial Probe, IEEE Transaction on Instrumentation and Measurement, 46(5), pp.1093- 1099.

  17. Gregory, A.P. and Clarke, R.N., (2007) , Dielectric metrology with coaxial sensors, Meas. Sci. Technol., 18, pp.1372-1386.

  18. Nozokido, T., Bae, J., and Mizuno, K., (2001) , Scanning Near-Field Millimeter-Wave Microscopy Using a Metal Slit as a Scanning Probe, IEEE Transaction on Microwave Theory and Technique, 49(3), pp.491-499.

  19. Panchenko, A.Yu., (1998) , Modeling a small aperture resonator type microwave meter of substance parameters, Telecommunications and Radio Engineering, 52(8), pp. 118-121.

  20. Liu Chang, Panchenko, A.Yu., Slipchenko, N.I., and Zaichenko, O.B., (2017) , Near-field coaxial of open type. Estimation of spatial resolution of measuring aperture, Bulletin of NTU KPI. Radio Engineering. Radio Eauipment Engineering, 71, pp. 17-24, (in Russian).

  21. Panchenko, B.A., (1970) , Tensor Green's functions of Maxwell's equations for cylindrical regions, Radiotekhnika, 15, pp. 82-91, (in Russian).

  22. Tai, C.T., (1983) , Dyadic Green's functions for a coaxial line, IEEE Trans. of Antennas and Propagation, 48(2), pp. 355-358.

  23. Chang Liu, Panchenko, A.Yu., and Slipchenko, M.I., (2016) , An integral equation for the field distribution within the aperture plane of the coaxial sensor, Telecommunications and Radio Engineering, 75(7), pp. 587-594.

  24. Liu Chang, Panchenko, A.Yu., Slipchenko, N.I., and Zaichenko, O.B., (2017), An open-end coaxial sensor. Integral equation of the electric field in the aperture plane, Bulletin of NTU KPI. Radio Engineering series. Radio Equipment Engineering, 69, pp. 11-16, (in Russian).

  25. Gordienko, Yu.E., Panchenko, A.Yu., and Far, R.S., (1998) , Approximation of a given field in problems of determining the characteristics of resonator microwave sensors of aperture type, Radiotekhnika, 107, pp. 93-103, (in Russian).

  26. Wen Mingming, Chang Liu, Panchenko, A.Yu., and Slipchenko, N.I., (2015), Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics, Telecommunications and Radio Engineering, 74(15), pp.1355-1366.


Articles with similar content:

SIMULATION OF THE PROCESS OF ESTIMATION OF CHANGES IN THE STATE OF WATER IN BIOLOGICAL OBJECTS IN THE MICROWAVE RANGE
Telecommunications and Radio Engineering, Vol.77, 2018, issue 18
I. N. Bondarenko, O. А. Derevyanko, Ch. Liu, O. Yu. Panchenko
ELECTRODYNAMIC SENSOR FOR ASSESSING TRANSFORMATIONS OF THE STATE OF WATER IN BIOLOGICAL OBJECTS
Telecommunications and Radio Engineering, Vol.77, 2018, issue 12
I. N. Bondarenko, N. I. Slipchenko, A. Yu. Panchenko, Ch. Liu
DISCHARGE WITH LIQUID NONMETALLIC ELECTRODES IN AIR AT ATMOSPHERIC PRESSURE
Progress in Plasma Processing of Materials, 1999, Vol.1, 1999, issue
Yu. Barinov, S. Shkol'nik, V. Rozdestvensky, A. Lefort, V. Kaplan, G. Faure, P. Andre
ANALYSIS OF PROPERTIES OF COAXIAL MICROWAVE SENSOR. FEATURES OF RESEARCHES OF TWO-LAYER BIOLOGICAL OBJECTS
Telecommunications and Radio Engineering, Vol.78, 2019, issue 12
I. N. Bondarenko, A. A. Derevyanko, A. Yu. Panchenko, Ch. Liu
On Spectral Modeling of Microwave Devices
Telecommunications and Radio Engineering, Vol.55, 2001, issue 8
A. V. Gritsunov