Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i5.10
pages 373-383


S. A. Vlasenko
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
А. V. Degtyarev
V. Karazin National University of Kharkiv, 4, Svoboda Sq., Kharkiv, 61022, Ukraine
M. M. Dubinin
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
V. A. Maslov
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine

Краткое описание

Wave beams with inhomogeneous spatial polarization of the emission are necessary for solving important fundamental and applied problems related to interaction of electromagnetic waves of terahertz range with matter. These include diagnostics of the material surfaces, thin films, biological objects, terahertz systems of data transfer and processing, attainment of sub-wave resolution in the terahertz tomography, terahertz communication systems etc. Results of investigation of specific features of terahertz wave focusing are practically absent. Based on the Rayleigh-Sommerfeld vector theory, a theoretical investigation has been performed of physical features of the moderate and sharp focusing of laser radiation beams excited by modes of the cavity of a circular metal waveguide with different spatial polarization of the field. The obtained results enhance knowledge on the specific features of focusing of terahertz range laser beams.


  1. Xiaoqiang, Z., Ruishan, C., and Anting, W., (2018) , Focusing properties of cylindrical vector vortex beams, Optics Communications, 414, pp. 10-15. DOI: 10.1016/j.optcom.2017.12.076

  2. Khonina, S.N. and Ustinov, A.V., (2018) , Focusing properties of cylindrical vector vortex beams, Optics Communications, 426, pp. 359-365. DOI: 10.1016/j.optcom.2018.05.070

  3. Fu, J., Yu, X., Wang, Y., and Chen, P., (2018) , Generation of pure longitudinal magnetization needle with tunable longitudinal depth by focusing azimuthally polarized beams, Applied Physics B, 124(11), pp. 1-365. DOI: 10.1007/s00340-017-6886-5

  4. Kozawa, Y. and Sato, S., (2007) , Sharper focal spot formed by higher-order radially polarized laser beams, JOSA A, 24(6), pp. 1793-1798. DOI: 10.1364/JOSAA.24.001793

  5. Zhan, Q. and Leger, J., (2002) , Focus shaping using cylindrical vector beams, Opt. Express, 10(7), pp. 324-331. DOI: 10.1364/OE.10.000324

  6. Chen, Z., Hua, L., and Pu, J., (2012) , Tight focusing of light beams: effect of polarization, phase, and coherence, Progress in Optics, 57, pp. 219-260. DOI: 10.1016/B978-0-44-459422-8.00004-7

  7. Zang, Z., Mao, C., Guo, X., You, G. et al., (2018) , Polarization-controlled terahertz super-focusing, Applied Physics Letters, 113(7), pp. 071102-4-071102-1. DOI: 10.1063/1.5039539

  8. Ruan, D., Li, Z., Du, L., Zhou, X. et al., (2018) , Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array, Applied Optics, 57(27), pp. 7905-7909. DOI: 10.1364/AO.57.007905

  9. Gurin, O.V., Degtyarev, A.V., and Maslov, V.A., (2015) , Propagation and focusing of modes of dielectric resonators of terahertz range lasers, Telecommunications and Radio Engineering, 74(7), pp. 629-640. DOI: 10.1615/TelecomRadEng.v74.i7.60

  10. Gurin, O.V., Degtyarev, A.V., Maslov, V.A., Senyuta, V.S. et al., (2014) , Propagation and focusing of modes of the dielectric resonator of terahertz laser, Laser Optics, 2014 International Conference, Proceedings, St. Petersburg, Russia. DOI: 10.1109/LO.2014.6886325

  11. Kotlyar, V.V. and Kovalev, A.A., (2010) , Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization, J. Opt. Soc., 27(3), pp. 372-380. DOI: 10.1364/JOSAA.27.000372

  12. Volodenko, A.V., Gurin, O.V., Degtyarev, A.V., Maslov, V.A. et al., (2013) , Radiation characteristics of the metal waveguide resonator with a inclined mirror, Telecommunications and Radio Engineering, 72(14), pp. 3149-1359. DOI: 10.1615/TelecomRadEng.v72.i14.70

  13. Gurin, O.V., Degtyarev, A.V., Dubinin, M.M., Maslov, V.A. (2018) , Focusing of Modes for Metallic Resonator of a Terahertz Laser with Nonuniform Spatial Polarization, IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), Proceedings, 2-5 July, Kyiv, Ukraine, pp. 226-229. DOI: 10.1109/MMET.2018.8460368

Articles with similar content:

Telecommunications and Radio Engineering, Vol.74, 2015, issue 7
V. A. Svich, V. S. Senyuta, A. N. Topkov, А. V. Degtyarev, V. A. Maslov, O. V. Gurin
Comparative Research on the Adequacy of GO/PO-, FDTD-, and IE-Based Numerical Algorithms for Analyzing Compact Dielectric Lenses in MM and SubMM Integrated Antennas
Telecommunications and Radio Engineering, Vol.68, 2009, issue 1
Alexander I. Nosich, R. Sauleau, A. Rolland, Artem V. Boriskin, G. Godi
Telecommunications and Radio Engineering, Vol.78, 2019, issue 16
M. I. Dzyubenko, V. P. Radionov, Ye. N. Odarenko, V. A. Maslov
Diffraction of the Plane Electromagnetic Wave on the Structure Incorporating Two Coaxial Unclosed Cones
Telecommunications and Radio Engineering, Vol.66, 2007, issue 5
S. V. Ruzhytskaya, E. K. Semenova, Ya. V. Doroshenko, V. A. Doroshenko
Geometrical Optics of an Axially Symmetric Inhomogeneous Amplifying Medium
Telecommunications and Radio Engineering, Vol.52, 1998, issue 12
Vladimir V. Savchenko