Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i5.40
pages 419-427

ANALYSIS OF THE IMPLEMENTATION COMPLEXITY OF CRYPTOSYSTEM BASED ON THE SUZUKI GROUP

G. Z. Khalimov
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
E. V. Kotukh
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
Yu. O. Serhiychuk
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
O. S. Marukhnenko
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine

Краткое описание

Implementations for cryptosystems of finite groups based on the logarithmic signature and covering are considered. A logarithmic signature is exemplified by a permutation group with the asymmetry of encryption and decryption algorithms. Decryption of the improved cryptosystem MST3 in Suzuki 2-group with the order of the group q2 is given. The Suzuki 2-group use has a significant advantage in implementation, due to the large center and simple group operation. Cost estimates for encryption, decryption and comparison with the RSA algorithm are obtained.

ЛИТЕРАТУРА

  1. Wagner, N.R. and Magyarik, M.R., (1984) , A Public Key Cryptosystem Based on the Word Problem, Advances in Cryptology. Proceedings of CRYPTO, pp. 19-36, edited by G.R. Blakley and D. Chaum, Lecture Notes in Computer Science 196. Berlin: Springer, 1985.

  2. Wagner, N.R., (1984) , Searching for Public-Key Cryptosystems, Proceedings of the Symposium on Security and Privacy (SSP ’84), pp. 91-98, Los Alamitos, CA: IEEE Computer Society Press.

  3. Magliveras, S.S., (1986) , A Cryptosystem from Logarithmic Signatures of Finite Groups, Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972-975. Amsterdam: Elsevier Publishing Company.

  4. Lempken, W., Magliveras, S.S., Tran van Trung, and Wei, W. (2009), A public key cryptosystem based on non-abelian finite groups, J. of Cryptology, 22, pp. 62-74.

  5. Higman, G., (1963) , Suzuki 2-groups.Ill, J. Mathematic, 7, pp. 79-96.

  6. Pavol Svaba, (2011) , Covers and logarithmic signatures of finite groups in cryptography, Dissertation, Bratislava, Slowakische Republik.


Articles with similar content:

A Determined Equivalent and Algorithms of Solving a Fuzzy-linear Programming Problem
Journal of Automation and Information Sciences, Vol.43, 2011, issue 2
Yuriy A. Zack
Closed-Form and Iterative Solutions to the Global Positioning System Problem
Journal of Automation and Information Sciences, Vol.34, 2002, issue 2
Marco Gatti, Salvatore Ponte, Nikolla Crocetto
Robust Multiobjective Identification of Nonlinear Objects Based on Evolving Radial Basis Networks
Journal of Automation and Information Sciences, Vol.45, 2013, issue 9
Alexander A. Bezsonov, Oleg G. Rudenko
DEVELOPMENT OF THE TRANSMITTING AND RECEIVING CHANNELS FOR TERAHERTZ BAND RELAY SYSTEMS
Telecommunications and Radio Engineering, Vol.74, 2015, issue 11
S.Ye. Kuzmin, O. V. Lutchak, Mikhail E. Ilchenko, T. M. Narytnyk, B.M. Radzikhovsky
A BOUNDARY VALUE PROBLEM WITH IRREGULAR BOUNDARY CONDITIONS
ICHMT DIGITAL LIBRARY ONLINE, Vol.4, 2001, issue
Dragan Vidovic