Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i17.10
pages 1485-1495

INFLUENCE OF EXCITATION METHOD ON THE INTEGRAL CHARACTERISTICS OF THE CIRCULAR PATCH MONOPOLE ANTENNAS

Sergey Pogarsky
V.N. Karazin Kharkov National University
Leonid M. Lytvynenko
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 4 Mystetstv St., Kharkiv 61002, Ukraine
D. V. Mayboroda
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
A. V. Poznyakov
V. Karazin National University of Kharkiv, 4, Svobody Square, Kharkiv, 61077, Ukraine

Краткое описание

The paper presents the results of influence of circular-patch monopole antennas excitation methods on their integral characteristics. The results are obtained by use of Finite Element Method (FEM). The obtained data show that method of excitation of monopole microstrip structures has significant influence on their integral characteristics. The results of investigations of three methods of excitation of monopole microstrip antennas with a complex configuration of radiators are presented. The spectral characteristics, matching characteristics with external circuits, the pattern characteristics are presented. The obtained results show that monopole microstrip resonators with complex configuration of radiators can be successfully used to provide the necessary integral parameters and to form the required parameters of radiated fields.

ЛИТЕРАТУРА

  1. Lytvynenko, L.N., Pogarsky, S.A., Mayboroda D.V., and Poznyakov, A.V., (2017) , Microstrip antenna with complex configuration of radiators, 11-th International Conference on Antenna Theory and Techniques, ICATT 2017, Kyiv, Ukraine, (http: // doi.org/10.1109.

  2. Labadie, N.R., Sharma, S.K., and Rebeiz, G.M., (2014) , A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications, IEEE Trans. Antennas Propag., 62, pp. 3490-3500. (DOI: 10.1109/TAP.2014.2320860).

  3. Pan, Y.M., Zheng, S.Y., and Hu, B.J., (2014) , Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna, IEEE Trans. Antennas Propag., 62, pp. 4347-4351. (DOI: 10.1109/TAP.2014.2323412).

  4. Bahl, I.J., Stuchly, S.S., and Stuchly, M.A., (1980) , A new microstrip radiator for medical applications, IEEE Trans. Microw. Theory Tech., 28, pp. 1464-1469. (DOI: 10.1109/TMTT.1980.1130268).

  5. Wolf, I., (1972) , Microstrip bandpass filters using degenerate modes of a microstrip ring resonators, Electron. Lett., 8(12), pp. 302-303.(DOI: 10.1049/el:19720223).

  6. Khilla, A.-M., (1981) , Simple design of x-junction microstrip circulators, Electron. Lett., 17(19), pp. 681-682. (DOI: 10.1049/el:19810476).

  7. Khilla, A.-M., (1981) , Analysis of wide-band microstrip circulators by point-matching technique, IEEE MTT-S International Microwave Symposium Digest, Los Angeles, USA. (DOI: 10.1109/MWSYM.1981.1129899).

  8. Monthasuwan, J., Saetiaw, C., and Thongsopa, C., (2013) , Curved rectangular patch array antenna using flexible copper sheet for small missile application, Int. J. of Electrical, Energetic, Electronic and Comm. Eng., 7(11), pp. 1420-1424. (DOI: scholar.waset.org/1999.5/17411).

  9. Silin, R.A. and Sazonov, V.P., (1966) , Slowing Down Systems, Moscow, Russia: Sov. Radio, (in Russian). (http://www.twirpx.com/file/247574).

  10. Maiboroda, D.V. and Pogarsky, S.A., (2014) , On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure, Telecommunications and Radio Engineering, 73(19), pp. 1713-1726. (DOI: 10.1615/TelecomRadEng.v73.i19.20).

  11. Mayboroda, D.V. and Pogarsky, S.A., (2016) , Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry, Telecommunications and Radio Engineering, 75(19), pp. 1713-1726. (DOI: 10.1615/TelecomRadEng.v75.i9.10).

  12. Mayboroda, D.V. and Pogarsky, S.A., (2016) , Tunable circular microstrip antenna with additional shorting-vias elements, Patent UA, no.107847. (http://uapatents.com/7-107847-perestroyuvana- diskova-mikrosmuzhkova-antena-z-dodatkovimi-zakorochuvalnimi-elementami.html).

  13. Mayboroda, D.V. and Pogarsky S.A., (2016) , Disk microstrip antenna with log-periodic radiators, Patent UA, no. 112248. (http://uapatents.com/8-112248-diskova-mikrosmuzhkova-antena-z- logoperiodichnimi-viprominyuvachami.html).


Articles with similar content:

CYLINDRICAL MICROSTRIP ANTENNAS WITH RADIATORS OF ARBITRARY GEOMETRY EXCITED BY A MICROSTRIP LINE
Telecommunications and Radio Engineering, Vol.70, 2011, issue 5
A. Ye. Svezhentsev
EXCITATION OF WHISPERING GALLERY MODES IN AN ANISOTROPIC SPHERE ILLUMINATED BY A WAVEGUIDE RADIATOR FIELD
Telecommunications and Radio Engineering, Vol.69, 2010, issue 6
A. Ya. Kirichenko, A. Ye. Kogut
HIGH-Q MODES IN IRREGULAR HYBRID STRUCTURES
Telecommunications and Radio Engineering, Vol.72, 2013, issue 19
S. I. Troitski, I. N. Bondarenko, A. V. Galich
Optimization of Linear Dynamical Systems by Functional Analysis Methods
Journal of Automation and Information Sciences, Vol.51, 2019, issue 2
Victor P. Pasko , Alexander A. Stenin, Irina G. Drozdovich
APPLICATION OF SOMMERFELD WAVE-EXCITED RING ANTENNAS FOR THE DESIGN OF SECURITY FENCE SYSTEMS
Telecommunications and Radio Engineering, Vol.73, 2014, issue 9
I. Voynovsky, V. Stepanyuk, Alexey A. Vertiy, S. S. Sautbekov, Yurii Konstantinovich Sirenko