Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v75.i12.60
pages 1101-1111

STATIC DOMAIN IN A TRANSFERRED-ELECTRON DEVICE BASED ON GRADED-GAP AlGaAS

I. P. Storozhenko
V. Karazin National University of Kharkiv, 4, Svoboda Sq., Kharkiv, 61077; National University of Pharmacy 53, Pushkinskaya Str., Kharkiv, 61002, Ukraine

Краткое описание

The usage of the varyband semiconductors in uniformly doped devices with intervalley electron transfer effect can result in the formation of a static electric domain. Keen interest in the static domain is due to the possibility of creating local electric field strength sufficient for zone-zone impact ionization. Diodes with avalanche ionization in the static domain can be used as active elements of noise generators. The paper analyzes the process of the static domain formation and avalanche current in it on the basis of a two-temperature model of varyband AlGaAs. It is shown that for a static domain formation at room temperature, two conditions are required. First, the minimum value of the energy gap between the Γ-valley and the closest to it in side valley by energy should be smaller than the thermal energy of the electrons. Secondly, the rate of change of the energy gap with coordinate must be greater than 150 eV·m-1. Accordingly, in the devices based on Al0.36Ga0.64As–GaAs cathode static domain is formed, and in the devices on the basis of GaAs-Al0.36Ga0.64As anode domain is formed. Varyband semiconductor compounds in which the static domain may form has been determined. The usage of graded-gap Al0.36Ga0.64As–GaAs compound with low doping level near the cathode increases the effective and integral current-multiplication factors as compared to GaAs-diode. The findings expand the knowledge of the physical processes of carrier transport in complex semiconductor structures. They can be used for technological development of new high-speed devices, such as transistors, diodes, Gunn diodes with a static domain, avalanche transit-time diodes, frequency multipliers.


Articles with similar content:

AlGaInAs GRADED-GAP GUNN DIODE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 16
I. P. Storozhenko, M. V. Kaydash
InBN AND GaBN GRADED-GAP GUNN DIODES
Telecommunications and Radio Engineering, Vol.73, 2014, issue 16
Yu. V. Arkusha, A.N. Yaroshenko, I. P. Storozhenko
In 0.4Ga 0.6As Gunn Diodes with a m-n : InP1-x Asx Cathode
Telecommunications and Radio Engineering, Vol.57, 2002, issue 6-7
Yu. V. Arkusha, E. D. Prokhorov, I. P. Storozhenko
PROPERTIES OF AlInN GRADED-GAP GUNN DIODES
Telecommunications and Radio Engineering, Vol.73, 2014, issue 10
M. V. Kaydash
IMPACT IONIZATION IN SHORT AlZGa1-ZN-BASED DIODES
Telecommunications and Radio Engineering, Vol.76, 2017, issue 1
V. A. Zozulia, K. H. Pryhodko, O. V. Botsula