Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Environmental Pathology, Toxicology and Oncology
Импакт фактор: 1.241 5-летний Импакт фактор: 1.349 SJR: 0.356 SNIP: 0.613 CiteScore™: 1.61

ISSN Печать: 0731-8898
ISSN Онлайн: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvPathToxOncol.v24.i2.40
pages 105-114

Antioxidant Potential of Black Tea Against 7,12-Dimethylbenz(a)anthracene- Induced Oxidative Stress in Swiss Albino Mice

Neetu Kalra
Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, Lucknow, India
Sahdeo Prasad
Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, Lucknow, India
Yogeshwer Shukla
Environmental Carcinogenesis Division, Industrial Toxicology Research Centre,Lucknow, India

Краткое описание

Oxygen free radicals and related reactive species have been implicated in the etiology of many diseases, such as atherosclerosis, neurodegenerative disorders, and cancer. Antioxidant enzymes exist in cells to protect against the effects of these free radicals and other oxygen-derived species, which are produced during the oxidative stress. Tea (Camellia sinensis) is the most commonly consumed beverage worldwide. Both green and black tea are known to possess many pharmacological properties, including antioxidant, antipyretic, antibacterial, and antineoplastic effects. In the present study, the preventive effects of black tea extract (BTE) was evaluated in Swiss albino mice against 7,12-dimethyl benz(a)anthracene (DMBA)-induced oxidative stress. The animals were given 0.5%, 1%, and 1.5% BTE as the sole source of drinking solution for 1 week prior to the administration of DMBA, which was given orally as a single dose of 50 mg/kg body weight. At the end of the study period, the liver, kidney, and prostate tissues were dissected out for the determination of antioxidant enzyme levels (catalase, superoxide dismutase, glutathione reductase, glutathione-S-transferase), and lipid peroxidation. A dose-dependent protective effect of BTE against DMBA-induced depletion in enzymes activity was observed in all three tissues examined. Similarly, a significant dose-dependent inhibition of the lipid peroxidation caused by DMBA was observed in the BTE-administered animals in all three tissues examined. Our results revealed that BTE provides protection against oxidative damage induced by xenobiotics.


Articles with similar content:

Trichosanthes dioica Fruit Extract Ameliorates Arsenic-Induced Brain Toxicity in Male Albino Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.32, 2013, issue 2
Sanjib Bhattacharya, Pallab Kanti Haldar
Naringenin Alleviates Cadmium-Induced Toxicity through the Abrogation of Oxidative Stress in Swiss Albino Mice
Journal of Environmental Pathology, Toxicology and Oncology, Vol.35, 2016, issue 2
Ruma Das, Avratanu Das, Sanjib Bhattacharya, Amrita Roy, Pallab Kanti Haldar
Role of Zinc in Modulating Histoarchitectural and Biochemical Alterations During Dimethylhydrazine (DMH)-Induced Rat Colon Carcinogenesis
Journal of Environmental Pathology, Toxicology and Oncology, Vol.28, 2009, issue 4
Devinder K. Dhawan, Anshoo Malhotra, Vijayta Dani Chadha, Praveen Nair
Effect of Ginkgo biloba Extract on Lead-Induced Oxidative Stress in Different Regions of Rat Brain
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 2
Prabhakara Rao Yallapragada, Manoj Kumar Velaga
Restoration of Brain Antioxidant Status by Hydroalcoholic Extract of Mimusops elengi Flowers in Rats Treated With Monosodium Glutamate
Journal of Environmental Pathology, Toxicology and Oncology, Vol.31, 2012, issue 3
B.S. Thippeswamy, Pandian Nagakannan, B.D. Shivasharan, V.P. Veerapur