Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Environmental Pathology, Toxicology and Oncology
Импакт фактор: 1.241 5-летний Импакт фактор: 1.349 SJR: 0.356 SNIP: 0.613 CiteScore™: 1.61

ISSN Печать: 0731-8898
ISSN Онлайн: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvironPatholToxicolOncol.v20.iSuppl.1.110
14 pages

Reactivity of Free Radicals on Hydroxylated Quartz Surface and Its Implications for Pathogenicity of Silicas: Experimental and Quantum Mechanical Study

Robert Konecny
National Institute for Occupational Safety and Health, Morgantown,WV. *Current address: Keck Center, University of California San Diego,La Jolla
Steve Leonard
National Institute for Occupational Safety and Health, Morgantown,WV. *Current address: Keck Center, University of California San Diego,La Jolla
Xianglin Shi
Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY; Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY
Victor A. Robinson
National Institute for Occupational Safety and Health: Health Effects Laboratory Division, Morgantown,WV
Vincent Castranova
Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505

Краткое описание

We studied the adsorption of hydroxyl radicals and superoxide anion radicals on a hydroxylated a-quartz surface using cluster and periodic slab models by means of density functional calculations. Models of two hydroxylated a-quartz surfaces—(0001) and (01111)—have been used in the simulations. The hydroxyl radical adsorbs readily on both surfaces. The subsurface Si–O bonds are weakened during the adsorption resulting in surface layer destabilization. This destabilization leads directly to surface disintegration in the case of •OH/(01111) adsorption. The product of the surface disintegration and reconstruction is a surface terminated by silanol groups (Si–OH) and siloxyl radicals (Si–O•). The model calculations suggest that adsorption of •OH on a hydroxylated quartz surface transforms a chemically inert, aged, silanol terminated surface to a very reactive, silicon-based radical terminated surface. The activated surface may then cause oxidative damage to the adsorbed biomaterial. The superoxide anion radical adsorbs on both surfaces, but the adsorption products are only weakly bonded to the surface. The calculated energy barrier for the O2•– activated subsurface Si–O bond dissociation is 10 kcal/mol, which is higher than for the •OH activated process (4 kcal/mol). The calculated weaker bonding to the surface and higher activation energy barrier suggest that the superoxide anion radical will be less efficient in reactivation of an aged, hydroxylated quartz surface than the hydroxyl radical. The importance of the specific geometry of the surface silicon atoms on the surface reactivity and adsorption properties is also discussed. The theoretical predictions are supported experimentally using chemiluminescence to monitor reactivation of the aged silica surface by superoxide anion radicals.


Articles with similar content:

CO2 DISSOCIATION ON Ni-RICH MULTIMETAL CLUSTER: EFFECT OF Pt AND Mg
International Journal of Energy for a Clean Environment, Vol.19, 2018, issue 3-4
Zehao Huang, Zhe Xu, Lijuan Fu, Wenjie Qi, Ying Yang, Xu Chen, Jie Song
OCCURRENCE OF CONVECTIVE FLOWS IN TERNARY LIQUID AND GASEOUS MIXTURES UNDER ISOTHERMAL CONDITIONS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Vladimir Kossov, Aliya Akzholova, Yuri I. Zhavrin, Olga V. Fedorenko
Variability of Biological Responses to Silicas: Effect of Origin, Crystallinity, and State of Surface on Generation of Reactive Oxygen Species and Morphological Transformation of Mammalian Cells
Journal of Environmental Pathology, Toxicology and Oncology, Vol.20, 2001, issue Suppl.1
Zoe Elias, Ivana Fenoglio, Odile Poirot, Bice Fubini
The Quartz Hazard: Effects of Surface and Matrix on Inflammogenic Activity
Journal of Environmental Pathology, Toxicology and Oncology, Vol.20, 2001, issue Suppl.1
Paul Borm, Ken Donaldson, Rodger Duffin, Anna Clouter, Vicki Stone, Roel Schins
EFFECTS OF PLASMA PARAMETERS ON PASSIVATION OF POLYCRYSTALLINE SILICON IN INDUCTIVE LOW PRESSURE HYDROGEN PLASMA
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.11, 2007, issue 2
D. Ballutaud, M. Nikravech, Jacques Amouroux, S. Darwiche, Daniel Morvan, S. Awamat