Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Nanoscience and Technology: An International Journal
ESCI SJR: 0.228 SNIP: 0.484 CiteScore™: 0.37

ISSN Печать: 2572-4258
ISSN Онлайн: 2572-4266

Nanoscience and Technology: An International Journal

Ранее издавался как Nanomechanics Science and Technology: An International Journal

DOI: 10.1615/NanoSciTechnolIntJ.2019031314
pages 157-168

FABRICATION AND CHARACTERIZATION OF POLYVINYL ALCOHOL INFILTRATED POLYURETHANE FOAMS FOR ENERGY ABSORPTION APPLICATIONS

Jasdeep Bhinder
Mechanics of Advanced Material Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Ropar, Rupnagar (140001), Punjab, India
Prabhat Agnihotri
Mechanics of Advanced Material Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Ropar, Rupnagar (140001), Punjab, India

Краткое описание

The present research is aimed at fabricating and characterizing PU/PVA composites. This is achieved through partial infiltration of PU foam with PVA solution in varying wt.% (1, 5, and 10). The PVA infiltrated PU foam samples are freezed followed by freeze drying. The PVA infiltration leads to a rise in the density conforming partial infiltration of PVA to PU foam. The microstructure and compressive mechanical properties of PVA infiltrated PU foam is compared with a neat PU foam. The microstructure of a PVA infiltrated PU foam shows hierarchical microstructure with small pores of PVA (40–50 μm) engulfed within larger pores of PU foam (500–600 μm). The uniaxial multiple cycle compression tests are carried out at a strain rate of 0.02 s–1. The specific elastic modulus, specific plateau stress, and specific densification showed a rise of 41%, 17%, and 5% for 1 wt.% with respect to the neat PU foam sample. A 1 wt.% PVA infiltrated sample shows the energy loss coefficient comparable to the neat PU foam during each cycle. This can be attributed to formation of stiffer cell walls with PVA infiltration. The peak efficiency parameter, indicating the absorbed energy normalized with peak stress shows an increase of 5% that to even at stress values similar for the neat PU foam sample.

ЛИТЕРАТУРА

  1. Alzoubi, M.F., Tanbour, E.Y., and Al-Waked, R., Compression and Hysteresis Curves of Nonlinear Polyurethane Foams under Different Densities, Strain Rates and Different Environmental Conditions, in ASME International Mechanical Engineering Congress and Exposition, Denver, Colorado, USA, pp. 101-109, November 11-17, 2011.

  2. Avalle, M., Belingardi, G., and Montanini, R., Characterization of Polymeric Structural Foams under Compression Impact Loading by Mean of Energy Absorption Diagrams, Int. J. Impact Eng., vol. 25, pp. 455-472, 2001.

  3. Bakshi, S.R., Batista, R.G., and Agarwal, A., Quantification of Carbon Nanotube Distribution and Property Correlation in Nanocomposites, Compos. Part A: Appl. Sci. Manuf, vol. 40, pp. 1311-1318, 2009.

  4. Bhinder, J. and Agnihotri, P.K., Processing and Characterization of Functionalized Carbon Nanotubes Foams, Mech. Adv. Mater. Struct., vol. 26, pp. 42-47, 2018.

  5. Chen, W., Lu, F., and Winfree, N., High-Strain-Rate Compressive Behavior of Rigid Polyurethane Foam with Various Densities, Exp. Mech., vol. 42, pp. 65-73, 2002.

  6. Ciecierska, E., Boczkowska, A., and Kurzydlowski, K.J., Quantitative Description of the Spatial Dispersion of Carbon Nanotubes in Polymeric Matrix, J. Mater. Sci., vol. 45, pp. 2305-2310, 2010.

  7. Dolomanova, V., Rauhe, J.C.M., Jensen, L.R., Pyrz, R., and Timmons, A.B., Mechanical Properties and Morphology of Nano-Reinforced Rigid PU Foam, J. Cell. Plast, vol. 47, pp. 81-93, 2011.

  8. Hu, N., Masuda, Z., Yamamoto, G., Fukunaga, H., Hashida, T., and Qiu, J., Effect of Fabrication Process on Electrical Properties of Polymer/Multi-Wall Carbon Nanotube Nanocomposites, Compos. Part A: Appl. Sci. Manuf., vol. 39, pp. 893-903, 2008.

  9. Hu, H., Zhao, Z., Zhang, R., Bin, Y., and Qui, J., Polymer Casting of Ultra Light Graphene Aerogels for the Production of Conductive Nanocomposite with Low Filling Content, J. Mater. Chem. A, vol. 2, pp. 3756-3760, 2014.

  10. Hutchinson, T.P., Peak Acceleration during Impact with Helmet Materials: Effects of Impactor Mass and Speed, Eur. J. Sport Sci, vol. 14, pp. 5377-5382, 2014.

  11. Kim, K.H., Vural, M., and Islam, M.F., Single-Walled Carbon Nanotube Aerogel-Based Elastic Conductors, Adv. Mater., vol. 23, pp. 2865-2869, 2012.

  12. Landro, L.D., Sala, G., and Olivieri, D., Deformation Mechanisms and Energy Absorption of Polystyrene Foams for Protective Helmets, Polym. Test., vol. 21, pp. 217-228, 2002.

  13. Lively, B., Smith, P., Wood, R., Maguire, W., and Zhong, W.-H., Quantified Stereological Macro Dispersion Analysis of Polymer Nanocomposite, Compos. Part A: Appl. Sci. Manuf., vol. 43, pp. 847-855, 2012.

  14. Lobos, J. and Velankar, S., How Much Do Nanoparticle Fillers Improve the Modulus and Strength of Polymer Foams?, J. Cell. Plast, vol. 52, pp. 57-88, 2016.

  15. Maji, A.K., Schreyer, H.L., Donald S., and Zuo, K., Mechanical Properties of Polyurethane-Foam Impact Limiters, J. Eng. Mech, vol. 121, pp. 528-540, 1995.

  16. Miltz, J. and Greunbaum, G., Evaluation of Cushioning Properties of Plastic Foams from Compressive Measurements, Polym. Eng. Sci., vol. 21, pp. 1010-1014, 1981.

  17. Miltz, J. and Raman, O., Energy Absorption Characteristics of Polymeric Foams Used as Cushioning Materials, Polym. Eng. Sci, vol. 30, pp. 129-133, 1990.

  18. Mosleh, Y., Bosche, K.V., Depreitere, B., Sloten, J.V., Verpoest, I., and Ivens, J., Effect of Polymer Foam Anisotropy on Energy Absorption during Combined Shear-Compression Loading, J. Cell. Plast, vol. 54, pp. 597-613, 2018.

  19. Nakagawa, K., Foam Materials Made from Carbon Nanotube: Nanotechnology and Nanomaterials, Intechopen, accessed from https://www.intechopen.com/books/carbon-nanotubes-from-research-to-applications/foam-materials-made-from-carbon-nanotubes, 2011.

  20. Ouellet, S., Cronin D., and Worswick, M., Compressive Response of Polymeric Foams under Quasi-Static, Medium and High Strain Rate Conditions, Polym. Test., vol. 25, pp. 731-743, 2006.

  21. Ozturk, U.E. and Anlas, G., Energy Absorption in Multiple Compressive Loading of Polymeric Foams, Mater. Des, vol. 30, pp. 15-22, 2009.

  22. Rodriguez, F., Cohen, C., Ober, C.K., and Archer, L., Principle of Polymer Systems, Boca Raton, Florida: CRC Press, 2014.

  23. Saha, M.C., Kabir, M.E., and Jeelani, S., Enhancement in Thermal and Mechanical Properties of Polyurethane Foam Infused with Nanoparticles, Mater. Sci. Eng. A, vol. 479, pp. 213-222, 2008.

  24. Tan, S., Abraham, T., Ference, D., and Macosko, C.W., Rigid Polyurethane Foams from a Soybean Oil-Based Polyol, Polymer, vol. 52, pp. 2840-2846, 2011.

  25. Thirumal, M., Khastgir, D., Singha, N.K., Manjunath, B.S., and Naik, Y.P., Lignin-Polyurethane Based Biodegradable Foam, J. Appl. Polym. Sci, vol. 108, pp. 1810-1817, 2008.

  26. Wang, Z., Shen, X., Garakani, M.A., Lin, X., Wu, Y., Liu, X., Sun, X., and Kim, J.K., Graphene Aerogel/Epoxy Composites with Exceptional Anisotropic Structure and Properties, Appl. Mater. Interf, vol. 7, pp. 5538-5549, 2015.

  27. Willemsen, A.M. and Rao, M.D., Sound Absorption Characteristics of Nanocomposite Polyurethane Foams Infused with Carbon Nanotubes, Noise Control Eng. J., vol. 63, pp. 424-438, 2015.

  28. Yan, D., Xu, L., Chen, C., Tang, J., Ji, X., and Li, Z., Enhanced Mechanical and Thermal Properties of Rigid Polyurethane Foam Composites Containing Graphene Nanosheets and Carbon Nanotubes, Polym. Int., vol. 61, pp. 1107-1114, 2012.

  29. Zhao, W., Li, Y., Wang, S., He, X., Shang, Y., Peng, Q., Wang, C., Du, S., and Gui, X., Elastic Improvement of Carbon Nanotube Sponges by Depositing Amorphous Carbon Coating, Carbon, vol. 76, pp. 19-26, 2014.

  30. Zheng, Y., Zheng, Y., and Ning, R., Effects of Nanoparticles SiO2 on the Performance of Nanocomposites, Mater. Lett, vol. 57, pp. 2940-2947, 2003.


Articles with similar content:

DETERMINATION OF THE MECHANICAL THRESHOLD STRESS IN RELATION TO AUSTENITIC STAINLESS STEEL 00H21AN16G5M4Nb
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.21, 2017, issue 1
Leslaw Kyzioł
THERMAL-MECHANICAL COUPLING PROPAGATION AND TRANSIENT THERMAL FRACTURE IN MULTILAYER COATINGS
Heat Transfer Research, Vol.48, 2017, issue 10
Long Zhang, Xiaomin Zhang, Zimin Yan, Yuan Liang, Bo Yan, Qibin Li, Song Peng
EXPERIMENTAL INVESTIGATION AND MODELING OF THE THERMOCYCLING EFFECT ON THE MECHANICAL PROPERTIES OF THE CFRP
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 4
A. V. Artemiev, Yury Solyaev, Sergey A. Lurie, Lev N. Rabinskiy, D. Q. Nguen, A. A. Dudchenko
MODULATION OF OPTICAL RADIATION BY MAGNETOMECHANICAL OSCILLATIONS IN THREE-LAYER COMPOSITE STRUCTURES
Telecommunications and Radio Engineering, Vol.74, 2015, issue 3
I.V. Linchevsky
INFLUENCE OF POST-WELDING HEAT TREATMENT ON MECHANICAL AND MICROSTRUCTURAL BEHAVIOR OF FRICTION STIR WELDED AA7075-T651 AND AA6061 DISSIMILAR JOINTS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.22, 2018, issue 1
K. P. Boopathiraja, Kunnathur Periyasamy Yuvaraj, P. Ashoka Varthanan