Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Печать: 2150-766X
ISSN Онлайн: 2150-7678

Том 19, 2020 Том 18, 2019 Том 17, 2018 Том 16, 2017 Том 15, 2016 Том 14, 2015 Том 13, 2014 Том 12, 2013 Том 11, 2012 Том 10, 2011 Том 9, 2010 Том 8, 2009 Том 7, 2008 Том 6, 2007 Том 5, 2002 Том 4, 1997 Том 3, 1994 Том 2, 1993 Том 1, 1991

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2020030624
pages 199-211


Mi Zhang
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Yi Wang
School of Materials Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China
Hao Huang
China North Industries Group Corporation Limited, Beijing 100821, China
Feifei Shang
Teaching and Research Support Center, Army Academy of Armored Forces, Beijing 100072, China
Xiaolan Song
School of Environment and Safety Engineering, North University of China, Taiyuan 030051, People's Republic of China

Краткое описание

Nitrocellulose/glycidylazide polymer/pentaerythritol tetranitrate (NC/GAP/PETN) nanocomposite energetic materials were successfully fabricated by sol-gel and supercritical drying methods. The microstructure of the nanocomposite was analyzed by scanning electron microscopy (SEM), infrared (IR), X-ray diffraction, and X-ray photoelectron spectroscopy. SEM pictures showed that the NC/GAP skeleton had nanoporous structure, and the PETN particles were enveloped in the gel skeleton. PETN did not undergo a phase transition during the reaction, and the molecular structures of NC, GAP, and PETN did not transform. The specific surface area of NC/GAP matrix was much higher than nanocomposite with PETN. Differential scanning calorimetry-IR was used to study the decomposition products of NC/GAP/PETN, and the main products contain CO2, N2O, and such. The energy performance was calculated, and the results implied that the energy performance will be higher as the content of NC increases. The results of the impact sensitivity and friction sensitivity tests show that the safety of nanocomposites becomes higher with the content of GAP increasing.


  1. Bayat, Y., Shirazinia, S.R., and Marandi, R., (1992) Ultrasonic Assisted Preparation of Nano HMX, Plant. Foods. Human. Nutri., 43, pp. 63-70.

  2. Bayat, Y., Zarandi, M., and Zarei, M.A., (2014) A Novel Approach for Preparation of CL-20 Nanoparticles by Microemulsion Method, J. Mol. Liq., 193, pp. 83-86.

  3. Chen, T., Jiang, W., and Du, P., (2017) Facile Preparation of 1,3,5,7-Tetranitro-1,3,5,7-Tetrazocane/Glycidylazide Polymer Energetic Nanocomposites with Enhanced Thermolysis Activity and Low Impact Sensitivity, Rsc. Adv., 7(10), pp. 5957-5965.

  4. Chi, Y., Huang, H., and Li, J.S., (2007) Preparation of RDX/SiO2 Nanocomposite Energetic Materials by Sol-Gel Method, Chinese J. Energ. Mater, 15(1), p. 16-.

  5. Chen, R.J., Luo, Y.J., and Sun, J., (2012) Preparation and Properties of an AP/RDX/SiO2 Nanocomposite Energetic Material by the Sol-Gel Method, Propell. Explos. Pyrot., 37(4), pp. 422-426.

  6. Deng, P., Ren, H., and Jiao, Q.J., (2019) Enhanced the Combustion Performances of Ammonium Perchlorate-Based Energetic Molecular Perovskite Using Functionalized Graphene, Vacuum, 169, p. 108882. DOI: 10.1016/j.vacuum.2019.108882.

  7. Deng, P., Ren, H., and Jiao, Q.J., (2020) Enhanced Thermal Decomposition Performance of Sodium Perchlorate by Molecular Assembly Strategy, IONICS, 26(2), pp. 1039-1044. DOI: 10.1007/s11581-019-03301-0.

  8. Guo, X.D., Ouyang, G., and Liu, J., (2015) Massive Preparation of Reduced-Sensitivity Nano CL-20 and Its Characterization, J. Energ. Mater, 33(1), pp. 24-33.

  9. Gao, K., Li, G.P., and Luo, Y.J., (2014) Preparation and Characterization of the AP/Al/Fe2O3 Ternary Nano-Thermites, J. Therm. Anal. Calorim., 118(1), pp. 43-49.

  10. He, B.D., Stepanov, V., and Qiu, H.W., (2015) Production and Characterization of Composite Nano-RDX by RESS Co-Precipitation, Propell. Explos. Pyrotech., 40(5), pp. 659-664.

  11. Jin, M.M. and Luo, Y.J., (2014) Preparation and Thermal Properties of NC/RDX Nano-Composite Energetic Materials, Acta. Arma., 35(6), pp. 822-827.

  12. Jin, M.M., Wang, G., and Deng, J.K., (2015) Preparation and Properties of NC/RDX/AP Nano-Composite Energetic Materials by the Sol-Gel Method, J. Sol-Gel. Sci. Techn., 76(1), pp. 58-65.

  13. Kumar, R., Siril, P.F., and Soni, P., (2014) Preparation of Nano-RDX by Evaporation Assisted Solvent Antisolvent Interaction, Propell. Explos. Pyrot., 39(3), pp. 383-389.

  14. Kissinger, H.E., (1957) Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 29( 11), pp. 1702-1706.

  15. Liu, J., Wei, J., and Li, F.S., (2014) Effect of Drying Conditions on the Particle Size, Dispersion State, and Mechanical Sensitivities of Nano HMX, Propell. Explos. Pyrot., 39(1), pp. 30-39.

  16. Liu, J., Li, Q., andZeng, J.B., (2013) Mechanical Pulverization for the Production of Sensitivity Reduced Nano-RDX, Explos. Mater, 42(3), pp. 1-5.

  17. Li, G.P., Liu, M.H., and Shen, L.H., (2015) Preparation and Thermal Properties of RDX/GAP Nanocomposite Energetic Materials, Chinese J. Explos. Propell., 38(2), pp. 25-29.

  18. Nazare, A.N., Asthana, S.N., and Singh, H., (1992) Glycidyl Azide Polymer (GAP)-An Energetic Component of Advanced Solid Rocket Propellants-A Review, J. Energ. Mater., 10(1), pp. 43-63.

  19. Pourmortazavi, S.M., Hosseini, S.G., and Rahimi-Nasrabadi, M., (2009) Effect of Nitrate Content on Thermal Decomposition of Nitrocellulose, J. Hazard. Mater, 162(2-3), pp. 1141-1144.

  20. Qiao, Y., Liu, J., and Xiao, L., (2016) Study on Thermal Decomposition Characteristics and Sensitivities of Nano-RDX based PBX, Explos. Mater., 45(3), pp. 17-21.

  21. Qiu, H., Stepanov, V., and Di, S.A., (2011) RDX-Based Nanocomposite Microparticles for Significantly Reduced Shock Sensitivity, J. Hazard. Mater, 185(1), pp. 489-493.

  22. Sovizi, M.R., Hajimirsadeghi, S.S., and Naderizadeh, B., (2009) Effect of Particle Size on Thermal Decomposition of Nitrocellulose, J. Hazard. Mater., 168(2), pp. 1134-1139.

  23. Shang, F.F., Zhang, J.L., and Zhang, X.L., (2012) Preparation and Characterization of Nano-CL-20 with Solution Enhanced Dispersion by Supercritical Fluids, Chinese J. Explos. Propell., 35(6), pp. 37-40.

  24. Song, X.L., Wang, Y., and An, C.W., (2008) Dependence of Particle Morphology and Size on the Mechanical Sensitivity and Thermal Stability of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine, J. Hazard. Mater., 159(2-3), pp. 222-229.

  25. Stepanov, V., Krasnoperov, N., and Elkina, B., (2005) Production of Nano Crystalline RDX by Rapid Expansion of Supercritical Solutions, Propell. Explos. Pyrot., 30(3), pp. 178-183.

  26. Song, X.L., Li, F.S., and Zhang, J.L., (2009) Preparation, Mechanical Sensitivity and Thermal Decomposition of AP/Fe2O3 Nanocomposite, J. Solid. Roc. Tech, vol. 32(3), pp. 306-309.

  27. Song, K.P., Song, X.L., and Zhang, S.H., (2011) Preparation and Performaces of ADN/Fe2O3 Nanocomposite Oxidant, J. Explos. Propell., 34(5), pp. 63-66.

  28. Shi, X.F., Wang, J.Y., and Li, X.D., (2015) Preparation and Properties of HMX/Nitrocellulose Nanocom-posites, J. Prop. Power., 31(2), pp. 757-761.

  29. Tillotson, T.M., Hrubesh, L.W., and Simpson, R.L., (1998) Sol-Gel Processing of Energetic Materials, J. Non-Cryst. Solid., 225, pp. 358-363.

  30. Tappan, B.C. and Brill, T.B., (2010) Thermal Decomposition of Energetic Materials 86. Cryogel Synthesis of Nanocrystalline CL-20 Coated with Cured Nitrocellulose, Propell. Explos. Pyrotech., 28(5), pp. 223-230.

  31. Wang, J.Y, Wang, R.H., and Liu, F., (2014) Preparation of Nano-Composite Energetic Material RDX / Fe2O3 by Sol-Gel Method, J. Solid. Roc. Tech., 37(2), pp. 228-232.

  32. Wang, Y., Song, X.L., and Song, D., (2016) Synthesis, Thermolysis, and Sensitivities of HMX/NC Energetic Nanocomposites, J. Hazard. Mater., 312, pp. 73-83.

  33. Wang, Y, Zhang, M., and Song, X.L., (2019) Characteristics and Properties of Nitrocellulose/Glycidyl Azide Polymer/2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzi-Tane Nanocomposites Synthesized Using a Sol-Gel Supercritical Method, Nanomater. Nanotechno., 9, pp. 1-12.

  34. Yang, Q., Liu, J., and Zeng, J.B., (2014) Thermal Decomposition Characteristics of Nano-HMX based PBX, Chinese J. Explos. Propell, 37(6), pp. 16-19.

  35. Yang, G.C., Nie, F.D., and Li, J.S., (2007) Preparation and Characterization ofNano-NTO Explosive, J. Energ. Mater, 25(1), pp. 35-47.

  36. Zeng, J.B., Liu, J., and Wang, L.X., (2014) Preparation, Thermal Performance Analysis and Sensitivities Study of Nano HMX, Explos. Mater, 43(1), pp. 8-12.

Articles with similar content:

International Journal of Energetic Materials and Chemical Propulsion, Vol.10, 2011, issue 3
Bo Janzon, Henric Ostmark
ADN: A new high performance oxidizer for solid propellants
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Henric Ostmark, Niklas Wingborg, A. Langlet
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.22, 2018, issue 4
Poppy Puspitasari, Alief Muhammad, Heru Suryanto, Andoko
International Journal of Energetic Materials and Chemical Propulsion, Vol.16, 2017, issue 1
Volker Weiser, Volker Gettwert, Luigi T. DeLuca, Andrea Franzin, Manfred A. Bohn
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 2
Alon Gany, Evgenia Golda Fradkin